Free Access
Issue
Environ. Biosafety Res.
Volume 7, Number 4, October-December 2008
Page(s) 227 - 239
DOI https://doi.org/10.1051/ebr:2008019
Published online 29 October 2008
  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 24: 3389–3402 [Google Scholar]
  • Arlorio M, Ludwig A, Boller T, Bonfante P (1992) Inhibition of fungal growth by plant chitinases and Formula -1,3-glucanases. Protoplasma 171: 34–43 [CrossRef] [Google Scholar]
  • Asao H, Nishizawa Y, Arai S, Sato T, Hirai M, Yoshida K, Shinmyo A, Hibi T (1997) Enhanced resistance against a fungal pathogen Sphaerotheca humuli in transgenic strawberry expressing a rice chitinase gene. Plant Biotechnol. 14: 145–149 [Google Scholar]
  • Baker ME (1998) Evolution of mammalian 11 beta- and 17 beta-hydroxysteroid dehydrogenases-type 2 and retinol dehydrogenases from ancestors in Caenorhabditis elegans and evidence for horizontal transfer of a eukaryote dehydrogenase to E. coli. J. Ster. Biochem. Mol. Biol. 66: 355–363 [CrossRef] [Google Scholar]
  • Bartnicki-Garcia S (1968) Cell wall chemistry, morphogenesis, and taxonomy of fungi. Ann. Rev. Microbiol. 22: 87–108 [Google Scholar]
  • Bertolla F, Simonet P (1999) Horizontal gene transfers in the environment, natural transformation as a putative process for gene transfers between transgenic plants and micro-organisms. Res. Microbiol. 150: 375–384 [Google Scholar]
  • Beintema J (1994) Structural features of plant chitinases and chitin-binding proteins. FEBS Letters 350: 159–163 [CrossRef] [PubMed] [Google Scholar]
  • Bolar JP, Norelli JL, Wong K-W, Hayes CK, Harman GE, Aldwinckle HS (2000) Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and reduces vigor. Phytopathology 90: 72–77 [CrossRef] [PubMed] [Google Scholar]
  • Bolar J, Norelli J, Harman G, Brown S, Aldwinckle H (2001) Synergistic activity of endochitinase and exochitinase from Trichoderma atroviride (T. harzianum) against the pathogenic fungus (Venturia inaequalis) in transgenic apple plants. Transgenic Res. 10: 533–543 [Google Scholar]
  • Boller T (1987) Hydrolytic enzymes in plant disease resistance. In Kosuge T, Nester EW, eds, Plant-Microbe Interactions, Macmillan, New York, Vol. 2, pp 385–413 [Google Scholar]
  • Brinkman FSL, MacFarlane ELA, Warrener P, Hancoc R (2001) Evolutionary relationships among virulence-associated histidine kinases. Infect. Immun. 69: 5207–5211 [CrossRef] [PubMed] [Google Scholar]
  • Brinkman FSL, Blanchard JL, Cherkasov A, Av-Gay Y, Brunham RC, Fernandez RC, Finlay B, Otto SP, Ouellette BFF, Keeling PJ, Rose AM, Hancock REW, Jones SJM (2002) Evidence that plant-like genes in Chlamydia species reflect an ancestral relationship between Chlamydiaceae, cyanobacteria, and the choloroplast. Genome Res. 12: 11159–1167 [Google Scholar]
  • Broglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais CJ, Broglie R (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254: 1194–1197 [CrossRef] [PubMed] [Google Scholar]
  • Buades C, Moya A (1996) Phylogenetic analysis of the isopenicillin-N-synthetase horizontal gene transfer. J. Mol. Evol. 42: 537–542 [CrossRef] [PubMed] [Google Scholar]
  • Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K (1993) Plant chitinases. Plant J. 3: 31–40 [Google Scholar]
  • Conner AJ, Glare TR, Nap J-P (2003) The release of genetically modified crops into the environment. Part II. Overview of ecological risk assessment. Plant J. 33: 19–46 [Google Scholar]
  • Cottrell MT, Wood DN, Yu L, Kirchman DL (2000) Selected chitinase genes in cultured and uncultured marine bacteria in the Formula - and Formula - subclasses of the Proteobacteria. Appl. Environ. Microbiol. 66: 1195–1201 [CrossRef] [PubMed] [Google Scholar]
  • Dale PJ, Clarke B, Fontes EMG (2002) Potential for the environmental impact of transgenic crops. Nature Biotechnol. 20: 567–574 [Google Scholar]
  • Datta K, Koukolíková-Nicola Z, Baisakh N, Oliva N, Datta SK (2000) Agrobacterium-mediated engineering for sheath blight resistance of indica rice cultivars from different ecosystems. Theor. Appl. Genet. 100: 832–839 [CrossRef] [Google Scholar]
  • Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3: 853–859 [CrossRef] [PubMed] [Google Scholar]
  • Davis JM, Clarke HR, Bradshaw HD Jr, Gordon MP (1991) Populus chitinase genes, structure, organization, and similarity of translated sequences to herbaceous plant chitinases. Plant Mol. Biol. 17: 631–639 [Google Scholar]
  • De Vries J, Meier P, Wackernagel W (2001) The natural transformation of the soil bacteria Pseudomonas stutzeri and Acinetobacter sp. by transgenic plant DNA strictly depends on homologous sequences in the recipient cells. FEMS Microbiology Letters 195: 211–215 [Google Scholar]
  • Emani C, Garcia JM, Lopata-Finch E, Pozo MJ, Uribe P, Kim D-J, Sunikumar G, Cook DR, Kenerley CM, Rathore KS (2003) Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens. Plant Biotech. J. 1: 321–336 [Google Scholar]
  • Furner IJ, Huffman GA, Amasino RM, Garfinkel DJ, Gordon MP, Nester EW (1986) An Agrobacterium transformation in the evolution of the genus Nicotiana. Nature 319: 422–427 [CrossRef] [Google Scholar]
  • Gamieldien J, Ptitsyn A, Hide W (2002) Eukaryotic genes in Mycobacterium tuberculosis could have a role in pathogenesis and immunomodulation. Trends Genet. 18: 5–8 [Google Scholar]
  • Garcia-Vallve S, Guzman E, Montero MA, Romeu A (2003) HGT-DB, a database of putative horizontally transferred genes in prokaryotic complete genomes. Nucleic Acids Res. 31: 187–189 [Google Scholar]
  • Gay P (2001) The biosafety of antibiotic resistance markers in plant transformation and the dissemination of genes through horizontal gene flow. In Custers R, ed, Safety of genetically engineered crops, Zwijnaarde, Belgium, Flanders Interuniversity Institute for Biotechnology, pp 135–159 [Google Scholar]
  • Gebhard F, Smalla K (1999) Monitoring field releases of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene transfer. FEMS Microbiol. Ecol. 28: 261–272 [CrossRef] [Google Scholar]
  • Grison R, Grezes-Besset B, Schneider M, Lucante N, Olsen L, Leguay JJ, Toppan A (1996) Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene. Nature Biotechnol. 14: 643–646 [Google Scholar]
  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95–98 [Google Scholar]
  • Hamel F, Boivin R, Tremblay C, Bellemare G (1997) Structural and evolutionary relationships among chitinases of flowering plants. J. Mol. Evol. 44: 614–624 [CrossRef] [PubMed] [Google Scholar]
  • Hawtin RE, Zarkowska T, Arnold K, Thomas CJ, Gooday GW, King LA, Kuzio JA, Possee RD (1997) Liquefaction of Autographa californica nucleopolyhedrovirus-infected insects is dependent on the integrity of virus-encoded chitinase and cathepsin genes. Virology 238: 243–253 [Google Scholar]
  • Hay I, Morency M-J, Séguin A (2002) Assessing the persistence of DNA in decomposing leaves of genetically modified poplar leaves. Can. J. For. Res. 32: 977–982 [CrossRef] [Google Scholar]
  • Heinemann JA, Traavik T (2004) Problems in monitoring horizontal gene transfer in field trials of transgenic plants. Nature Biotechnol. 22: 1105–1109 [Google Scholar]
  • Heuer H, Smalla K (2007) Horizontal gene transfer between bacteria. Environ. Biosafety Res. 6: 3–13 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Hoffman T, Golz C, Schieder O (1994) Foreign DNA sequences are received by a wild-type strain of Aspergillus niger after co-culture with transgenic higher plants. Curr. Genet. 27: 70–76 [CrossRef] [PubMed] [Google Scholar]
  • Holmgren A, Bränden C (1989) Crystal structure of chaperone protein PapD reveals an immunoglobulin fold. Nature 342: 248–251 [CrossRef] [PubMed] [Google Scholar]
  • Hon WC, Griffith M, Mlynarz A, Kwok YC, Yang DSC (1995) Antifreeze proteins in winter rye are similar to pathogenesis-related proteins. Plant Physiol. 109: 879–889 [CrossRef] [PubMed] [Google Scholar]
  • Intrieri M, Buiatti M (2001) The horizontal transfer of Agrobacterium rhizogenes genes and the evolution of the genus Nicotiana. Mol. Phylogenet. Evol. 20: 100–110 [CrossRef] [PubMed] [Google Scholar]
  • Katz LA (1996) Transkingdom transfer of the phosphoglucose isomerase gene. J. Mol. Evol. 43: 453–459 [CrossRef] [PubMed] [Google Scholar]
  • Ke D, Boissinot M, Huletsky A, Picard FJ, Frenette J, Ouellette M, Roy PH, Bergeron MG (2000) Evidence for horizontal gene transfer in evolution of elongation factor Tu in enterococci. J. Bacteriol. 182: 6913–6920 [CrossRef] [PubMed] [Google Scholar]
  • Klotz MG, Klassen GR, Loewen PC (1997) Phylogenetic relationships among prokaryotic and eukaryotic catalases. Mol. Biol. Evol. 14: 951–958 [PubMed] [Google Scholar]
  • Kong H, Shimosaka M, Ando Y, Nishiyama K, Fujii T, Miyashita K (2001) Species-specific distribution of a modular family 19 chitinase gene in Burkholderia gladioli. FEMS Microbiol. Ecol. 37: 135–141 [CrossRef] [Google Scholar]
  • Koonin EV, Makarova KS, Aravind L (2001) Horizontal gene transfer in prokaryotes, quantification and classification. Ann. Rev. Microbiol. 55: 709–742 [Google Scholar]
  • Koski LB, Morton RA, Golding GB (2000) Codon bias and base composition are poor indicators of horizontally transferred genes. Mol. Biol. Evol. 18: 404–412 [Google Scholar]
  • Lilley AK, Fry JC, Day MJ, Bailey MJ (1994) In situ transfer of an exogenously isolated plasmid between Pseudomonas spp. in sugar beet rhizosphere. Microbiology 140: 27–33 [CrossRef] [Google Scholar]
  • Lorito M, Woo SL, Fernandez IG, Colucci G, Harman GE, Pintor-Toro JA, Filippone E, Muccifora S, Lowrence CB, Zoina A, Tuzun S, Scala F (1998) Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc. Natl. Acad. Sci. USA 95: 7860–7865 [CrossRef] [Google Scholar]
  • Mauch F, Mauch-Mani B, Boller T (1988) Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and Formula -1,3-glucanase. Plant Physiol. 88: 936–942 [Google Scholar]
  • Melchers LS, Apotheker-de Groot M, van der Knaap JA, Ponstein AS, Sela-Buurlage MB, Bol JF, Cornelissen BJ, van den Elzen PJM, Linthorst HJM (1994) A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity. Plant J. 5: 469–480 [Google Scholar]
  • Monier JM, Bernillon D, Kay E, Faugier A, Rybalka O, Dessaux Y, Simonet P, Vogel TM (2007) Detection of potential transgenic plant DNA recipients among bacteria. Environ. Biosafety Res. 6: 71–83 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Nielsen KM, Townsend JP (2004) Monitoring and modeling horizontal gene transfer. Nature Biotechnol. 22: 1110–1114 [Google Scholar]
  • Nielsen KM, Gebhard F, Smalla K, Bones AM, van Elsas JD (1997) Evaluation of possible horizontal gene transfer from transgenic plants to the soil bacterium Acinetobacter calcoaceticus BD413. Theor. Appl. Genet. 95: 815–821 [CrossRef] [Google Scholar]
  • Nielsen KM, Bones AM, Smalla K, van Elsas JD (1998) Horizontal gene transfer from transgenic plants to terrestrial bacteria – rare event. FEMS Microbiol. Res. 22: 79–103 [Google Scholar]
  • Nielsen KM, van Elsas JD, Smalla K (2000) Transformation of Acinetobacter sp. Strain BD413 (pFGnptII) with transgenic plant DNA in soil microcosms and effects of kanamycin on selection of transformants. Appl. Environ. Microbiol. 66: 1237–1242 [CrossRef] [PubMed] [Google Scholar]
  • Nielsen KM, Johnsen PJ, Bensasson D, Daffonchio D (2007) Release and persistence of extracellular DNA in the environment. Environ. Biosafety Res. 6: 37–53 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299–304 [CrossRef] [PubMed] [Google Scholar]
  • Ohno T, Armand S, Hata T, Nikaidou N, Henrissat B, Mitsutomi M, Watanabe T (1996) A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037. J. Bacteriol. 17: 5065–5070 [Google Scholar]
  • Pappinen A, Degefu Y, Syrjälä L, Keinonen K, von Weissenberg K (2002) Transgenic silver birch (Betula pendula) expressing a sugar beet chitinase 4 gene shows enhanced resistance to Pyrenopeziza betulicola. Plant Cell Rep. 20: 1046–1051 [Google Scholar]
  • Pasonen H-L, Seppänen S-K, Degefu Y, Rytkönen A, von Weissenberg K, Pappinen A (2004) Field performance of chitinase transgenic silver birches (Betula pendula): resistance to fungal diseases. Theor. Appl. Genet. 109: 562–570 [PubMed] [Google Scholar]
  • Pontiroli A, Simonet P, Frostegard A, Vogel TM, Monier J-M (2007) Fate of transgenic plant DNA in the environment. Environ. Biosafety Res. 6: 15–35 [Google Scholar]
  • Robinson SP, Jacobs AK, Dry IB (1997) A class IV chitinase is highly expressed in grape berries during ripening. Plant Physiol. 114: 771–778 [CrossRef] [PubMed] [Google Scholar]
  • Royo J, Gimez E, Hueros G (2000) CMP-KDO synthetase, a plant gene borrowed from gram negative eubacteria. Trends Genet. 16: 432–433 [Google Scholar]
  • Schlumbaum A, Mauch F, Vögeli U, Boller T (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324: 365–367 [CrossRef] [Google Scholar]
  • Snowden K, Logan K, Didier ES (1999) Encephalitozoon cuniculi strain III is a cause of encephalitozoonosis in both humans and dogs. J. Infect Dis. 180: 2086–2088 [Google Scholar]
  • Sowka S, Hsieh LS, Krebitz M, Akasawa A, Martin BM, Starrett D, Peterbauer CK, Scheiner O, Breiteneder H (1998) Identification and cloning of Prs a 1, a 32-kDa endochitinase and major allergen of avocado, and its expression in the yeast Pichia pastoris. J. Biol. Chem. 273: 28091–28097 [Google Scholar]
  • Sun L, Adams B, Gurnon JR, Ye Y, Van Etten J (1999) Characterization of two chitinase genes and one chitisanase gene encoded by Chlorella virus PBCV-1. Virology 263: 376–387 [CrossRef] [PubMed] [Google Scholar]
  • Swofford DL (2000) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts [Google Scholar]
  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W, improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap-penalties and weigh matrix choise. Nucleic Acids Res. 22: 4673–4680 [Google Scholar]
  • Troxler J, Azelvandre P, Zala M, Defago G, Haas D (1997) Conjugative transfer of chromosomal genes between fluorescent pseudomonas in the rhizosphere of wheat. Appl. Environ. Microbiol. 63: 213–219 [Google Scholar]
  • van Elsas JD, Nikkel M, van Overbeek LS (1989) Detection of plasmid RP4 transfer in soil and rhizosphere, and the occurrence of homology to RP4 in soil bacteria. Curr. Microbiol. 19: 375–381 [CrossRef] [Google Scholar]
  • van Elsas JD, Turner S, Bailey MJ (2003) Horizontal gene transfer in the phytosphere. New Phytol. 157: 525–537 [Google Scholar]
  • van Frankenhuyzen K, Beardmore T (2004) Current status and environmental impact of transgenic forest trees. Can. J. For. Res. 34: 1163–1180 [Google Scholar]
  • Vellice GR, Diaz Ricci JC, Hernández L, Castagnaro AP (2006) Enhanced resistance to Botrytis cinerea mediated by the transgenic expression of the chitinase gene ch5B in strawberry. Transgenic Res. 15: 57–68 [Google Scholar]
  • Vierheilig H, Alt-Hug M, Wiemken A, Boller T (2001) Hyphal in vitro growth of the arbuscular mycorrhizal fungus Glomus mossae is affected by chitinase but not by Formula -1,3-glucanase. Mycorrhiza 11: 279–282 [CrossRef] [PubMed] [Google Scholar]
  • Watanabe T, Kanai R, Kawase T, Tanabe T, Mitsutomi M, Sakuda S, Miyashita K (1999) Family 19 chitinases of Streptomyces species, characterization and distribution. Microbiology 145: 3353–3363 [PubMed] [Google Scholar]
  • Wiener P, Egan S, Huddleston A, Wellington E (1998) Evidence for transfer of antibiotic-resistance genes in soil populations of Streptomycetes. Mol. Ecol. 7: 1205–1216 [Google Scholar]
  • Wolfenbarger LL, Pfifer PR (2000) The ecological risks and benefits of genetically engineered plants. Science 290: 2088–2093 [CrossRef] [PubMed] [Google Scholar]