Open Access
Issue
Environ. Biosafety Res.
Volume 7, Number 4, October-December 2008
Page(s) 241 - 252
DOI https://doi.org/10.1051/ebr:2008021
Published online 16 December 2008
  • APHIS/BRS (USDA Animal and Plant Health Inspection Service, Biotechnology Regulatory Services) (2007) Draft Guidance for APHIS Permits for Field Testing or Movement of Organisms with Pharmaceutical or Industrial Intent. USDA/APHIS/BRS, Riverdale, Maryland, 42 p, http://www.aphis.usda.gov/brs/pdf/Pharma_Guidance.pdf [Google Scholar]
  • Bellrose FC, Sieh JG (1960) Massed waterfowl flights in the Mississippi flyway, 1956 and 1957. Wilson Bull. 72: 29–59 [Google Scholar]
  • Bent AC (1932/1963) Life Histories of North American Gallinaceous Birds. Smithsonian Institution, U.S. National Museum Bull. 162 / Dover Publications, New York, 490 p [Google Scholar]
  • Bent AC (1958/1965) Life Histories of North American Blackbirds, Orioles, Tanagers, and Allies. Smithsonian Institution, U.S. National Museum Bull. 211 / Dover Publications, New York, 549 p [Google Scholar]
  • Bernhardt GE, Van Allsburg L, Dolbeer RA (1987) Blackbird and starling feeding behavior on ripening corn ears. Ohio J. Sci. 87: 125–129 [Google Scholar]
  • Brugger KE, Dolbeer RA (1990) Geographic origin of red-winged blackbirds relative to rice culture in southwestern and southcentral Louisiana. J. Field Ornithol. 61: 90–97 [Google Scholar]
  • Chakauya E, Chikwamba R, Rybicki EP (2006) Riding the tide of biopharming in Africa: considerations for risk assessment. South African J. Sci. 102: 284–288 [Google Scholar]
  • Charalambidou I, Santamaría L (2002) Waterbirds as endozoochorous dispersers of aquatic organisms: a review of experimental evidence. Acta Oecol. 23: 165–176 [CrossRef] [Google Scholar]
  • Charalambidou I, Santamaría L, Langevoord O (2003) Effect of ingestion by five avian dispersers on the retention time, retrieval and germination of Ruppia maritima seeds. Functional Ecol. 17: 747–753 [Google Scholar]
  • Charalambidou I, Santamaría L, Jansen C, Nolet BA (2005) Digestive plasticity in mallard ducks modulates dispersal probabilities of aquatic plants and crustaceans. Functional Ecol. 19: 513–519 [Google Scholar]
  • Clark RG, Gentle GC (1990) Estimates of grain passage time in captive mallards. Canad. J. Zool. 68: 2275–2279 [Google Scholar]
  • Clausen P, Nolet BA, Fox AD, Klaassen M (2002) Long-distance endozoochorous dispersal of submerged macrophyte seeds by migratory waterbirds in northern Europe – a critical review of possibilities and limitations. Acta Oecol. 23: 191–203 [Google Scholar]
  • Cooke WW (1940) Bird Migration. U.S. Dept. Agric. Bull. 185: 1–47 [Google Scholar]
  • Cummings JL, Shwiff SA, Tupper SK (2005) Economic impacts of blackbird damage to the rice industry. In Nolte DL and Fagerstone KA, eds, Proceedings of the 11th Wildlife Damage Management Conference, Wildlife Damage Management Working Group of The Wildlife Society, Fort Collins, Colorado, pp 317–322 [Google Scholar]
  • Dalal M, Dani RG, Kumar PA (2006) Current trends in the genetic engineering of vegetable crops. Sci. Hort. 107: 215–225 [Google Scholar]
  • Desai BB (2004) Seeds Handbook: Biology, Production, Processing, and Storage, 2nd edn, Marcel Dekker, New York, 787 p [Google Scholar]
  • DeVault TL, Rhodes Jr OE, Shivik JA (2003) Scavenging by vertebrates: behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 102: 225–234 [CrossRef] [Google Scholar]
  • Dill HH (1969) A Field Guide to Cannon Net Trapping. U.S. Department of the Interior, Bureau of Sport Fisheries and Wildlife, 18 p [Google Scholar]
  • Dolbeer RA (1978) Movement and migration patterns of red-winged blackbirds: a continental overview. Bird-Banding 49: 17–34 [CrossRef] [Google Scholar]
  • Einsiedel EF, Medlock J (2005) A public consultation on plant molecular farming. AgBioForum 8: 26–32 [Google Scholar]
  • Elbehri A (2005) Biopharming and the food system: examining the potential benefits and risks. AgBioForum 8: 18–25 [Google Scholar]
  • EPA (United States Environmental Protection Agency) (1996) Ecological Effects Test Guidelines: OPPTS 850.4100 Terrestrial Plant Toxicity, Tier I (Seedling Emergence). EPA 712-C-96-153, 6 p [Google Scholar]
  • Figuerola J, Green AJ (2002a) Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies. Freshwater Biol. 47: 483–494 [Google Scholar]
  • Figuerola J, Green AJ (2002b) How frequent is external transport of seeds and invertebrate eggs by waterbirds? A study in Doñana, SW Spain. Archiv. Hydrobiol. 155: 557–565 [Google Scholar]
  • Figuerola J, Green AJ, Santamaría L (2002) Comparative dispersal effectiveness of wigeongrass seeds by waterfowl wintering in south-west Spain: quantitative and qualitative aspects. J. Ecol. 90: 989–1001 [Google Scholar]
  • Figuerola J, Green AJ, Santamaría L (2003) Passive internal transport of aquatic organisms by waterfowl in Doñana, south-west Spain. Global Ecol. Biogeogr. 12: 427–436 [Google Scholar]
  • Fischer R, Stoger E, Schillberg S, Christou P, Twyman RM (2004) Plant-based production of biopharmaceuticals. Current Opinion Plant Biol. 7: 152–158 [Google Scholar]
  • Floss DM, Falkenburg D, Conrad U (2007) Production of vaccines and therapeutic antibodies for veterinary applications in transgenic plants: an overview. Transgenic Res. 16: 315–332 [Google Scholar]
  • Freese B, Hansen M, Gurian-Sherman D (2004) Pharmaceutical Rice in California: Potential Risks to Consumers, the Environment and the California Rice Industry. Friends of the Earth (FOE), Center for Food Safety, Consumers Union, and Environment California, FOE, Washington, DC, 19 p [Google Scholar]
  • Gepts P (2004) Crop domestication as a long-term selection experiment. Plant Breed. Rev. 24: 1–44 [Google Scholar]
  • Goldstein DA, Thomas JA (2004) Biopharmaceuticals derived from genetically modified plants. QJM: Internat. J. Med. 97: 705–716 [Google Scholar]
  • Green AJ, Figuerola J, Sánchez MI (2002) Implications of waterbird ecology for the dispersal of aquatic organisms. Acta Oecol. 23: 177–189 [CrossRef] [Google Scholar]
  • Gressel J, ed (2005) Crop Ferality and Volunteerism. CRC Press, Boca Raton, Florida, USA, 422 p [Google Scholar]
  • Han M, Su T, Zu Y-G, An Z-G (2006) Research advances on transgenic plant vaccines. Acta Genetica Sinica 33: 285–293 [CrossRef] [Google Scholar]
  • Herdt RW (2006) Biotechnology in agriculture. Annual Rev. Environ. Resour. 31: 265–295 [Google Scholar]
  • Holland JM, Hutchison MAS, Smith B, Aebischer NJ (2006) A review of invertebrates and seed-bearing plants as food for farmland birds in Europe. Annals Appl. Biol. 148: 49–71 [Google Scholar]
  • Howard JA, Hood EE (2007) Methods for growing nonfood products in transgenic plants. Crop Sci. 47: 1255–1262 [Google Scholar]
  • Knittle CE, Linz GM, Johns BE, Cummings JL, Davis JE, Jaeger MM (1987) Dispersal of male red-winged blackbirds from two spring roosts in central North America. J. Field Ornithol. 58: 490–498 [Google Scholar]
  • Ma JK-C, Chikwamba R, Sparrow P, Fischer R, Mahoney R, Twyman RM (2005) Plant-derived pharmaceuticals – the road forward. Trends Plant Sci. 10: 580–585 [Google Scholar]
  • Malone CR (1965) Dispersal of plankton: rate of food passage in mallard ducks. J. Wildl. Managem. 29: 529–533 [Google Scholar]
  • Manley SW, Kaminski RM, Reinecke KJ, Gerard PD (2004) Waterbird foods in winter-managed ricefields in Mississippi. J. Wildl. Managem. 68: 74–83 [Google Scholar]
  • Martin AC, Zim HS, Nelson AL (1951/1961) American Wildlife and Plants: A Guide to Wildlife Food Habits. McGraw-Hill Book Co., New York/Dover Publications, New York, 500 p [Google Scholar]
  • Mascia PN, Flavell RB (2004) Safe and acceptable strategies for producing foreign molecules in plants. Current Opinion Plant Biol. 7: 189–195 [Google Scholar]
  • McAtee WL (1947) Distribution of seeds by birds. Amer. Midland Naturalist 38: 214–223 [CrossRef] [Google Scholar]
  • Mewett O, Johnson H, Holtzapffel R (2007) Plant Molecular Farming in Australia and Overseas. Bureau of Rural Sciences, Australian Government, Canberra, xvi + 47 p [Google Scholar]
  • Moschini GC (2006) Pharmaceutical and industrial traits in genetically modified crops: coexistence with conventional agriculture. Amer. J. Agric. Econ. 88: 1184–1192 [Google Scholar]
  • Mueller MH, van der Valk AG (2002) The potential role of ducks in wetland seed dispersal. Wetlands 22: 170–178 [CrossRef] [Google Scholar]
  • Murphy DJ (2007) Improving containment strategies in biopharming. Plant Biotech. J. 5: 555–569 + Tables S1–S3 (17 p) [Google Scholar]
  • Nathan R, Muller-Landau HC (2000) Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol. Evol. 15: 278–285 [Google Scholar]
  • Nelms CO, Twedt DJ (1996) Seed deterioration in flooded agricultural fields during winter. Wildl. Soc. Bull. 24: 85–88 [Google Scholar]
  • Nogales M, Medina FM, Valido A (1996) Indirect seed dispersal by the feral cats Felis catus in island ecosystems (Canary Islands). Ecography 19: 3–6 [CrossRef] [Google Scholar]
  • Nogales M, Quilis V, Medina FM, Mora JL, Trigo LS (2002) Are predatory birds effective secondary seed dispersers? Biol. J. Linnean Soc. 75: 345–352 [Google Scholar]
  • NRC (Committee on Environmental Impacts Associated with Commercialization of Transgenic Plants, Board on Agriculture and Natural Resources, National Research Council) (2002) Environmental Effects of Transgenic Plants: The Scope and Adequacy of Regulation. National Academies Press, Washington, DC, 342 p [Google Scholar]
  • Peterson CA, Lee SL, Elliott JE (2001) Scavenging of waterfowl carcasses by birds in agricultural fields of British Columbia. J. Field Ornithol. 72: 150–159 [Google Scholar]
  • Peterson RKD, Arntzen CJ (2004) On risk and plant-based biopharmaceuticals. Trends Biotech. 22: 64–66 [Google Scholar]
  • Pierson TA, Cobb RG, Scanlon PF (1976) Crop contents of rock doves in Virginia. Wilson Bull. 88: 489–490 [Google Scholar]
  • Pinowski J, Summers-Smith JD, eds (1990) Granivorous Birds in the Agricultural Landscape. Polish Scientific Publishers, Warsaw, 360 p [Google Scholar]
  • Pollux BJA, Santamaría L, Ouborg NJ (2005) Differences in endozoochorous dispersal between aquatic plant species, with reference to plant population persistence in rivers. Freshwater Biol. 50: 232–242 [Google Scholar]
  • Powers KD, Noble RE, Chabreck RH (1978) Seed distribution by waterfowl in southwestern Louisiana. J. Wildl. Managem. 42: 598–605 [Google Scholar]
  • Proctor VW (1964) Viability of crustacean eggs recovered from ducks. Ecology 45: 656–658 [CrossRef] [Google Scholar]
  • Proctor VW (1966) Dispersal of desmids by waterbirds. Phycologia 5: 227–232 [CrossRef] [Google Scholar]
  • Prosser P, Hart ADM (2005) Assessing potential exposure of birds to pesticide-treated seeds. Ecotoxicology 14: 679–691 [CrossRef] [PubMed] [Google Scholar]
  • Ridley HN (1930) The Dispersal of Plants Throughout the World. L. Reeve & Company, Ashford, Kent, Great Britain, 744 p [Google Scholar]
  • Rose E, Nagel P, Haag-Wackernagel D (2006) Spatio-temporal use of the urban habitat by feral pigeons (Columba livia). Behav. Ecol. Sociobiol. 60: 242–254 + S1 (1 p) [Google Scholar]
  • Santamaría L, Charalambidou I, Figuerola J, Green AJ (2002) Effect of passage through duck gut on germination of fennel pondweed seeds. Archiv. Hydrobiol. 156: 11–22 [Google Scholar]
  • Scheller J, Conrad U (2005) Plant-based material, protein and biodegradable plastic. Current Opinion Plant Biol. 8: 188–196 [Google Scholar]
  • Sibbald IR (1979) Passage of feed through the adult rooster. Poultry Sci. 58: 446–459 [Google Scholar]
  • Smallwood M (2006) The impact of genomics on crops for industry. J. Sci. Food Agric. 86: 1747–1754 [Google Scholar]
  • Sorensen AE (1986) Seed dispersal by adhesion. Annual Rev. Ecol. System. 17: 443–463 [Google Scholar]
  • Spök A (2007) Molecular farming on the rise – GMO regulators still walking a tightrope. Trends Biotech. 25: 74–82 [Google Scholar]
  • Stafford JD, Kaminski RM, Reinecke KJ, Manley SW (2006) Waste rice for waterfowl in the Mississippi Alluvial Valley. J. Wildl. Managem. 70: 61–69 [Google Scholar]
  • Swank WG (1944) Germination of seeds after ingestion by pheasants. J. Wildl. Managem. 8: 223–231 [Google Scholar]
  • Teli NP, Timko MP (2004) Recent developments in the use of transgenic plants for the production of human therapeutics and biopharmaceuticals. Plant Cell Tissue Organ Cult. 79: 125–145 [Google Scholar]
  • Traveset A (1998) Effect of seed passage through vertebrate frugivores' guts on germination: a review. Perspectives Plant Ecol. Evol. System. 1: 151–190 [Google Scholar]
  • Turcek FJ, Kelso L (1968) Ecological aspects of food transportation and storage in the Corvidae. Commun. Behav. Biol., Part A 1: 277–297 [Google Scholar]
  • UCS (Union of Concerned Scientists) (2006) Position Paper: Pharmaceutical and Industrial Crops. Union of Concerned Scientists, Washington, DC, 23 p [Google Scholar]
  • van der Pijl L (1982) Principles of Dispersal in Higher Plants, 3rd edn, Springer-Verlag, Berlin and New York, 215 p [Google Scholar]
  • Vander Wall SB (1990) Food Hoarding in Animals. University of Chicago Press, Chicago, 453 p [Google Scholar]
  • Wang BC, Smith TB (2002) Closing the seed dispersal loop. Trends Ecol. Evol. 17: 379–385 [Google Scholar]
  • Warwick SI, Stewart Jr CN (2005) Crops come from wild plants – how domestication, transgenes, and linkage together shape ferality. In Gressel J, ed, Crop Ferality and Volunteerism, CRC Press, Boca Raton, Florida, USA, pp 9–30 [Google Scholar]
  • Yusibov V, Rabindran S, Commandeur U, Twyman RM, Fischer R (2006) The potential of plant virus vectors for vaccine production. Drugs R. D. 7: 203–217 [CrossRef] [PubMed] [Google Scholar]