Open Access
Issue
Environ. Biosafety Res.
Volume 7, Number 2, April-June 2008
Page(s) 87 - 96
DOI https://doi.org/10.1051/ebr:2008005
Published online 16 April 2008
  • Abel CA, Adamczyk JJ Jr (2004) Relative concentration of Cry1A in maize leaves and cotton bolls with diverse chlorophyll content and corresponding larval development of fall armyworm (Lepidoptera: Noctuidae) and Southwestern corn borer (Lepidoptera: Crambidae) on maize whorl leaf profiles. J. Econ. Entomol. 97: 1737–1744 [CrossRef] [PubMed] [Google Scholar]
  • Adamczyk JJ Jr, Meredith WR (2006) Selecting for efficacy of Bollgard cotton cultivars against various Lepidoptera using forward breeding techniques. J. Econ. Entomol. 99: 1835–1841 [CrossRef] [PubMed] [Google Scholar]
  • Adamczyk JJ Jr, Adams LC, Hardee DD (2001) Field efficiency and seasonal expression profiles for terminal leaves of single and double Bacillus thuringiensis toxin cotton genotypes. J. Econ. Entomol. 94: 1589–1593 [Google Scholar]
  • Anklam E, Heinze P, Kay S, Vanden Eede G (2002) Validation studies and proficiency testing. J. AOAC Int. 85: 809–815 [Google Scholar]
  • California Crop Improvement Association (2007) Seed certification standards in California: Cotton. http://ccia.ucdavis.edu/seed_cert/cotton.htm [Google Scholar]
  • Carrière Y, Sisterson MS, Tabashnik BE (2004a) Resistance management for sustainable use of Bacillus thuringiensis crops. In Horowitz AR, Ishaaya I, eds, Insect pest management: field and protected crops, Springer, New York, pp 65–95 [Google Scholar]
  • Carrière Y, Dutilleul P, Ellers-Kirk C, Pedersen B, Haller S, Antilla L, Dennehy TJ, Tabashnik BE (2004b) Sources, sinks, and the zone of influence of refuges for managing insect resistance to Bt crops. Ecol. Appl. 14: 1615–1623 [Google Scholar]
  • Carrière Y, Ellers-Kirk C, Kumar K, Heuberger S, Whitlow M, Antilla L, Dennehy TJ, Tabashnik BE (2005) Long-term evaluation of compliance with refuge requirements for Bt cotton. Pest Manag. Sci. 61: 327–330 [Google Scholar]
  • Chilcutt CF, Tabashnik BE (2004) Contamination of refuges by Bacillus thuringiensis toxin genes from transgenic maize. Proc. Natl. Acad. Sci. USA 101: 7526–7529 [CrossRef] [Google Scholar]
  • DeGrandi-Hoffman G, Morales F (1989) Identification and distribution of pollinating honey bees (Hymenoptera: Apidae) on sterile male cotton. J. Econ. Entomol. 82: 580–583 [Google Scholar]
  • Free JB (1970) Insect pollination of crops. Academic Press, New York, pp 151–167 [Google Scholar]
  • Friesen LF, Nelson AG, Van Acker RC (2003) Evidence of contamination of pedigreed canola (Brassica napus) seedlots in western Canada with genetically engineered herbicide resistance traits. Agron. J. 95: 1342–1347 [Google Scholar]
  • Gaines T, Preston C, Byrne P, Henry WB, Westra P (2007) Adventitious presence of herbicide resistant wheat in certified and farm-saved seed lots. Crop Sci. 47: 751–756 [Google Scholar]
  • Gould F (1998) Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu. Rev. Entomol. 43: 701–726 [Google Scholar]
  • Heuberger S, Ellers-Kirk C, Yafuso C, Gassmann AJ, Tabashnik BE, Dennehy TJ, Carrière Y (2008) Effects of refuge contamination by transgenes on Bt resistance in pink bollworm (Lepidoptera: Gelechiidae). J. Econ. Entomol. 101: 504–514 [Google Scholar]
  • Hutmacher RB, Vargas RN (2006) Methods to enable the coexistence of diverse cotton production systems. University of California, Davis, Agricultural Biotechnology in California Series, Pub. 8191 [Google Scholar]
  • Jayaraman KS (2005) Monsanto's Bollgard potentially compromised in India. Nat. Biotechnol. 23: 1326 [Google Scholar]
  • Kranthi KR, Dhawad CS, Naidu S, Mate K, Patil E, Kranthi S (2005) Bt-cotton seed as a source of Bacillus thuringiensis insecticidal Cry1Ac toxin for bioassays to detect and monitor bollworm resistance to Bt-cotton. Curr. Sci. 88: 796–798 [Google Scholar]
  • Llewellyn D, Fitt G (1996) Pollen dispersal from two field trials of transgenic cotton in the Namoi Valley, Australia. Mol. breed. 2: 157–166 [Google Scholar]
  • Llewellyn D, Tyson C, Constable G, Duggan B, Beale S, Steel P (2007) Containment of regulated genetically modified cotton in the field. Agr. Ecosyst. Environ. 121: 419–429 [Google Scholar]
  • Ma BL, Subedi KD, Reid LM (2004) Extent of cross-fertilization in maize by pollen from neighboring transgenic hybrids. Crop Sci. 44: 1273–1282 [Google Scholar]
  • Matten SR, Reynolds AH (2003) Current resistance management requirements for Bt cotton in the United States. J. New Seeds 5: 137–178 [CrossRef] [Google Scholar]
  • McGregor SE (1959) Cotton-flower visitation and pollen distribution by honey bees. Science 129: 97–98 [CrossRef] [PubMed] [Google Scholar]
  • Mellon M, Rissler J (2004) Gone to seed: Transgenic contaminants in the traditional food supply. Union of Concerned Scientists, Cambridge [Google Scholar]
  • Pla M, La Paz J, Peñas G, García N, Palaudelmàs M, Esteve T, Messeguer J, Melé E (2006) Assessment of real-time PCR based methods for quantification of pollen-mediated gene flow from GM to conventional maize in a field study. Transgenic Res. 15: 219–228 [Google Scholar]
  • Rieger MA, Lamond M, Preston C, Powles SB, Roush R (2002) Pollen-mediated movement of herbicide resistance between commercial canola fields. Science 296: 2386–2388 [Google Scholar]
  • Roberts G, Kerlin S, Hickman M (2002) Controlling volunteer cotton. WEEDpak, Australian Cotton Cooperative Research Centre, Narrabri, New South Wales. http://cotton.crc.org.au/files/d3a83b8a-0eed-4167-bd73-992b01125337/WPf4.pdf [Google Scholar]
  • Sachs ES, Benedict JH, Stelly DM, Taylor JF, Altman DW, Berberich SA, Davis SK (1998) Expression and segregation of genes encoding Cry1A insecticidal proteins in cotton. Crop Sci. 38: 1–11 [CrossRef] [Google Scholar]
  • Sims SR, Berberich SA (1996) Bacillus thuringiensis Cry1A protein levels in raw and processed seed of transgenic cotton: determination using insect bioassay and ELISA. J. Econ. Entomol. 89: 247–251 [Google Scholar]
  • Tabashnik BE, Carrière Y (2007) Evolution of insect resistance to transgenic plants. In Tilmon K, ed, Specialization, speciation, and radiation: the evolutionary biology of herbivorous insects University of California Press, Berkeley, pp 267–279 [Google Scholar]
  • Tabashnik BE, Gould F, Carrière Y (2004) Delaying evolution of insect resistance to transgenic crops by decreasing dominance and heritability. J. Evol. Biol. 17: 904–912 [Google Scholar]
  • Umbeck PF, Barton KA, Nordheim EV, McCarty JC, Parrott WL, Jenkins JN (1991) Degree of pollen dispersal by insects from a field test of genetically engineered cotton. J. Econ. Entomol. 84: 1943–1950 [Google Scholar]
  • United States Environmental Protection Agency (2006) Introduction to biotechnology regulation for pesticides: gene flow for plant-incorporated protectants. http://www.epa.gov/pesticides/biopesticides/regtools/biotech-reg-prod.htm [Google Scholar]
  • University of California Integrated Pest Management Program (1996) Integrated pest management for cotton in the western region of the United States, 2nd edition. Division of Agriculture and Natural Resources, Publication 3305, 16 p [Google Scholar]
  • Watrud LS, Lee EH, Fairbrother A, Burdic C, Reichman JR, Bollman M, Storm M, King G, Van de Water PK (2004) Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker. Proc. Natl. Acad. Sci. USA 101: 14533–14538 [Google Scholar]
  • Zhang B, Guo T, Wang Q (2000) Inheritance and segregation of exogenous genes in transgenic cotton. J. Genet. 79: 71–75 [Google Scholar]
  • Zhang B, Pan X, Guo T, Wang Q, Anderson TA (2005) Measuring gene flow in the cultivation of transgenic cotton (Gossypium hirsutum L.). Mol. Biotechnol. 31: 11–19 [CrossRef] [PubMed] [Google Scholar]