Free Access
Issue |
Environ. Biosafety Res.
Volume 6, Number 1-2, January-June 2007
Thematic Issue on Horizontal Gene Transfer
|
|
---|---|---|
Page(s) | 135 - 147 | |
DOI | https://doi.org/10.1051/ebr:2007032 | |
Published online | 20 September 2007 |
- Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402 [CrossRef] [PubMed] [Google Scholar]
- Andersen HK (2005) Natural transformation of Acinetobacter baylyi strain BD413 in the gut of New Zealand grass grub. M.Sc. thesis, University of Tromsø, Tromsø, Norway [Google Scholar]
- Averhoff B, Gregg-Jolly L, Elsemore D, Ornston LN (1992) Genetic analysis of supraoperonic clustering by use of natural transformation in Acinetobacter calcoaceticus. J. Bacteriol. 174: 200–204 [Google Scholar]
- Bensasson D, Boore JL, Nielsen KM (2004) Genes without frontiers. Heredity 92: 483–489 [CrossRef] [PubMed] [Google Scholar]
- Biggs DR, McGregor PG (1996) Gut pH and amylase and protease activity in larvae of the New Zealand grass grub (Costelytra zealandica; Coleoptera: Scarabiaedae) as a basis for selection inhibitors. Insect Biochem. Mol. Biol. 26: 69–75 [Google Scholar]
- Broer I, Dröge-Laser W, Gerke M (1996) Examination of the putative horizontal gene transfer from transgenic plants to Agrobacteria. In Schmidt ER, Hankeln T, eds, Transgenic organisms and biosafety, horizontal gene transfer, stability and expression of transgenes, Springer-Verlag, pp 67–70 [Google Scholar]
- Carlson CA, Pierson LS, Rosen JJ, Ingraham JL (1983) Pseudomonas stutzeri and related species undergo natural transformation. J. Bacteriol. 153: 93–99 [PubMed] [Google Scholar]
- Chamier B, Lorenz MG, Wackernagel W (1993) Natural transformation of Acinetobacter calcoaceticus by plasmid DNA adsorbed on sand and groundwater aquifer material. Appl. Environ. Microbiol. 59: 1662–1667 [PubMed] [Google Scholar]
- Chapman RF (1985) Structure of the digestive system. In Kerkut GA, Gilbert LI, eds, Regulation of Digestion, Nutrition and Excretion, Pergamon Press, pp 165–211 [Google Scholar]
- Clerc S, Simonet P (1998) A review of available systems to investigate transfer of DNA to indigenous soil bacteria. Antonie van Leeuwenhoek 73: 15–23 [CrossRef] [PubMed] [Google Scholar]
- Cohan FM, Roberts MS, King EC (1991) The potential for genetic exchange by transformation within a natural population of Bacillus subtilis. Evolution 45: 1393–1421 [Google Scholar]
- Daffonchio D, Zanardini E, Vatta P, Sorlini C (1999) Cometabolic degradation of thiocarbamate herbicides by Streptomyces sp. strain M2 and effects on the cell metabolism. Ann. Microbiol. Enzymol. 49: 13–22 [Google Scholar]
- Davidson M, Takla M, Jacobs J, Butler R, Wratten S, Conner A (2004) Transformation of potato cultivars (Solanum tuberosum) with a cry1Ac9 gene confers resistance to potato tuber moth. New Zealand J. Crop Horticult. Sci. 32: 39–50 [Google Scholar]
- de Vries J, Wackernagel W (1998) Detection of nptII (kanamycin resistance) genes in genomes of transgenic plants by marker-rescue transformation. Mol. Gen. Genet. 257: 606–613 [CrossRef] [PubMed] [Google Scholar]
- de Vries J, Wackernagel W (2002) Integration of foreign DNA during natural transformation of Acinetobacter sp. by homology-facilitated illegitimate recombination. Proc. Natl. Acad. Sci. USA 99: 2094–2099 [CrossRef] [Google Scholar]
- de Vries J, Wackernagel W (2004) Microbial horizontal gene transfer and the DNA release from transgenic crop plants. Plant Soil 266: 91–104 [CrossRef] [Google Scholar]
- de Vries J, Meier P, Wackernagel W (2001) The natural transformation of the soil bacteria Pseudomonas stutzeri and Acinetobacter sp. by transgenic plant DNA strictly depends on homologous sequences in the recipient cells. FEMS Microbiol. Lett. 195: 211–215 [PubMed] [Google Scholar]
- de Vries J, Herzfeld T, Wackernagel W (2004) Transfer of plastid DNA from tobacco to the soil bacterium Acinetobacter sp. by natural transformation. Mol. Microbiol. 53: 323–334 [CrossRef] [PubMed] [Google Scholar]
- Deni J, Message B, Chiocciolo M, Tepfer D (2005) Unsuccessful search for DNA transfer from transgenic plants to bacteria in the intestine of the tobacco horn worm, Manduca sexta. Transgenic Res. 14: 207–215 [Google Scholar]
- Ferro DN (1976) New Zealand Insect Pests. Lincoln University College of Agriculture, New Zealand, 311 p [Google Scholar]
- Gebhard F, Smalla K (1998) Transformation of Acinetobacter sp. strain BD413 by transgenic sugar beet DNA. Appl. Environ. Microbiol. 64: 1550–1554 [Google Scholar]
- Gebhard F, Smalla K (1999) Monitoring field releases of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene transfer. FEMS Microbiol. Ecol. 28: 261–272 [CrossRef] [Google Scholar]
- Huey B, Hall J (1989) Hypervariable DNA fingerprinting in E. coli minisatellite probe from bacteriophage M13. J. Bacteriol. 171: 2528–2532 [PubMed] [Google Scholar]
- Hurst MR, Jackson TA (2002) Use of green fluorescent protein to monitor the fate of Serratia entomophila causing amber disease in the New Zealand grass grub, Costelytra zealandica. J. Microbiol. Meth. 50: 1–8 [CrossRef] [Google Scholar]
- Hurst MR, Glare TR, Jackson TA, Ronson CW (2000) Plasmid-located pathogenicity determinants of Serratia enomophilia, the causal agent of amber disease of grass grub, show similarity to the insecticidal toxins of Photorhabdus luminescens. J. Bacteriol. 182: 5127–5138 [Google Scholar]
- Jackson TA, Huger AM, Glare TR (1997) Pathology of amber disease in the New Zealand grass grub Costelytra zealandica (Coleoptera: Scarabaeidae). J. Invert. Pathol. 61: 123–130 [CrossRef] [Google Scholar]
- Juni E (1972) Interspecies transformation of Acinetobacter - genetic evidence for a ubiquitous genus. J. Bacteriol. 112: 917–931 [PubMed] [Google Scholar]
- Juni E, Janik A (1969) Transformation of Acinetobacter calcoaceticus (Bacterium anitratum). J. Bacteriol. 98: 281–288 [PubMed] [Google Scholar]
- Kay E, Bertolla F, Vogel TM, Simonet P (2002a) Opportunistic colonization of Ralstonia solanacearum-infected plants by Acinetobacter sp. and its natural competence development. Microb. Ecol. 43: 291–297 [CrossRef] [PubMed] [Google Scholar]
- Kay E, Vogel TM, Bertolla F, Nalin R, Simonet P (2002b) In situ transfer of antibiotic resistance genes from transgenic (transplastomic) tobacco plants to bacteria. Appl. Environ. Microbiol. 68: 3345–3351 [Google Scholar]
- Lane DJ (1991) 16S/23S rRNA Sequencing. In Stackebrandt E, Goodfellow M, eds, Nucleic Acid Techniques in Bacterial Systematics, J. Wiley and Sons, Chichester, UK, pp 115–176 [Google Scholar]
- Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev. 58: 563–602 [PubMed] [Google Scholar]
- Lorenz MG, Reipschlaeger K, Wackernagel W (1992) Plasmid transformation of naturally competent Acinetobacter calcoaceticus in non-sterile soil extract and groundwater. Arch. Microbiol. 157: 355–360 [CrossRef] [PubMed] [Google Scholar]
- Matsui K, Ishii N, Kawabata Z (2003) Release of extracellular transformable plasmid DNA from Escherichia coli cocultivated with algae. Appl. Environ. Microbiol. 69: 2399–2404 [CrossRef] [PubMed] [Google Scholar]
- McManus MT, Laing WA, Watson LM, Markwick N, Voisey CR, White DWR (2005) Expression of the soybean (Kunitz) trypsin inhibitor in leaves of white clover. Plant Sci. 168: 1211–1220 [CrossRef] [Google Scholar]
- Mohr KI, Tebbe CC (2006) Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environ. Microbiol. 8: 258–272 [Google Scholar]
- Nielsen KM, van Elsas JD (2001) Stimulatory effects of compounds present in the rhizosphere on natural transformation of Acinetobacter sp. BD413 in soil. Soil Biol. Biochem. 33: 345–357 [CrossRef] [Google Scholar]
- Nielsen KM, Townsend JP (2004) Monitoring and modeling horizontal gene transfer. Nature Biotechnol. 22: 1110–1114 [Google Scholar]
- Nielsen KM, van Weerelt MDM, Berg TN, Bones AM, Hagler AN, van Elsas JD (1997a) Natural transformation and availability of transforming DNA to Acinetobacter calcoaceticus in soil microcosms. Appl. Environ. Microbiol. 63: 1945–1952 [PubMed] [Google Scholar]
- Nielsen KM, Bones AM, van Elsas JD (1997b) Induced natural transformation of Acinetobacter calcoaceticus in soil microcosms. Appl. Environ. Microbiol. 63: 3972–3977 [PubMed] [Google Scholar]
- Nielsen KM, Gebhard F, Smalla K, Bones AM, van Elsas JD (1997c) Evaluation of possible horizontal gene transfer from transgenic plants to the soil bacterium Acinetobacter calcoaceticus BD413. Theor. Appl. Genet. 95: 815–821 [CrossRef] [Google Scholar]
- Nielsen KM, Bones AM, Smalla K, van Elsas JD (1998) Horizontal gene transfer from transgenic plants to terrestrial bacteria - a rare event? FEMS Microbiol. Rev. 22: 79–103 [PubMed] [Google Scholar]
- Nielsen KM, Smalla K, van Elsas JD (2000a) Natural transformation of Acinetobacter sp. strain BD413 with cell lysates of Acinetobacter sp., Pseudomonas fluorescens, and Burkholderia cepacia in soil microcosms. Appl. Environ. Microbiol. 66: 206–212 [CrossRef] [PubMed] [Google Scholar]
-
Nielsen KM, van Elsas JD, Smalla K (2000b) Transformation of Acinetobacter sp. strain BD413(pFG4
tII) with transgenic plant DNA in soil microcosms and effects of kanamycin on selection of transformants. Appl. Environ. Microbiol. 66: 1237–1242 [CrossRef] [PubMed] [Google Scholar]
- Nielsen KM, Berdal KG, Kruse H, Sundsfjord A, Mikalsen A, Yazdankhah S, Nes I (2005) An assessment of potential long-term health effects caused by antibiotic resistance marker genes in genetically modified organisms based on antibiotic usage and resistance patterns in Norway. Norwegian Scientific Committee for Food Safety Report, Oslo, Norway, 62 pp [Google Scholar]
- Paget E, Lebrun M, Freyssinet G, Simonet P (1998) The fate of recombinant plant DNA in soil. Eur. J. Soil Biol. 34: 81–88 [Google Scholar]
- Palmen R, Hellingwerf KJ (1997) Uptake and processing of DNA by Acinetobacter calcoaceticus: A review. Gene 192: 179–190 [CrossRef] [PubMed] [Google Scholar]
- Ray J, Nielsen K (2005) Experimental methods for assaying natural transformation and inferring horizontal gene transfer. In Zimmer E, Roalson E, eds, Molecular Evolution: Producing the Biochemical Data, Part B, Elsevier Academic Press, pp 491–520 [Google Scholar]
- Schlüter K, Futterer J, Potrykus I (1995) Horizontal gene transfer from a transgenic potato line to a bacterial pathogen (Erwinia chrysanthemi) occurs - if at all - at an extremely low frequency. Biotechnol. 13: 94–98 [Google Scholar]
- Sikorski J, Teschner N, Wackernagel W (2002) Highly different levels of natural transformation are associated with genomic subgroups within a local population of Pseudomonas stutzeri from soil. Appl. Environ. Microbiol. 68: 865–873 [CrossRef] [PubMed] [Google Scholar]
- Smit E, van Elsas JD (1992) Conjugal gene transfer in the soil environment: new approaches and developments. In Gauthier M, ed, Gene Transfers and Environment, Springer-Verlag, Berlin, pp 79–94 [Google Scholar]
- Starr MP, Grimont PAD, Grimont F, Starr PB (1976) Caprylate thallous agar medium for selectively isolating Serratia and its utility in the clinical laboratory. J. Clin. Microbiol. 4: 270–276 [PubMed] [Google Scholar]
- Stewart GJ, Sinigalliano CD (1990) Detection of horizontal gene transfer by natural transformation in native and introduced species of bacteria in marine and synthetic sediments. Appl. Environ. Microbiol. 56: 1818–1824 [PubMed] [Google Scholar]
- Tepfer D, Garcia-Gonzales R, Mansouri H, Seruga M, Message B, Leach F, Perica C (2003) Homology-dependent DNA transfer from plants to a soil bacterium under laboratory conditions: implications in evolution and horizontal gene transfer. Transgenic Res. 12: 425–437 [Google Scholar]
- Urzi C, Brusetti L, Salamone P, Sorlini C, Stackebrandt E, Daffonchio D (2001) Biodiversity of Geodermatophilaceae isolated from altered stones and monuments in the Mediterranean basin. Environ. Microbiol. 3: 471–479 [Google Scholar]
- Versalovic J, Schneider M, de Bruijn FJ, Lupski JR (1994) Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol. Cell Biol. 5: 25–40 [Google Scholar]
- Wang Z-Y, Ge Y (2005) Agrobacterium-mediated high efficiency transformation of tall fescue (Festuca arundinacea). J. Plant Physiol. 162: 103–113 [Google Scholar]
- Williams HG, Day MJ, Fry JC, Stewart GJ (1996) Natural transformation in river epilithon. Appl. Environ. Microbiol. 62: 2994–2998 [PubMed] [Google Scholar]