Free Access
Issue
Environ. Biosafety Res.
Volume 6, Number 1-2, January-June 2007
Thematic Issue on Horizontal Gene Transfer
Page(s) 121 - 133
DOI https://doi.org/10.1051/ebr:2007028
Published online 26 October 2007
  • Bell RA, Joachim FG (1976) Techniques for rearing laboratory colonies of tobacco hornworms and pink bollworms. Annals Entomol. Soc. America 69: 365–373 [Google Scholar]
  • Bennett PM, Livesey CT, Nathwani D, Reeves DS, Saunders JR, Wise R (2004) An assessment of the risks associated with the use of antibiotic resistance genes in genetically modified plants: report of the Working Party of the British Society for Antimicrob. Chemother. J. Antimicrob. Chemother. 53: 418–431 [CrossRef] [PubMed] [Google Scholar]
  • Berenbaum MR (1980) Adaptive significance of the midgut pH in larval lepidoptera. Am. Nat. 115: 138–146 [Google Scholar]
  • Bertolla F, Simonet P (1999) Horizontal gene transfers in the environment: natural transformation as a putative process for gene transfers between transgenic plants and microorganisms. Res. Microb. 150: 375–384 [Google Scholar]
  • Bertolla F, Frostegard A, Brito B, Nesme X, Simonet P (1999) During infection of its host, the plant pathogen Ralstonia solanacearum naturally develops a state of compentence and exchanges genetic material. Mol. Plant Microbe Interact. 12: 467–472 [CrossRef] [Google Scholar]
  • Chambers PA, Duggan PS, Heritage J, Forbes JM (2002) The fate of antibiotic resistance marker genes in transgenic plant feed material fed to chickens. J. Antimicrob. Chemother. 49: 161–164 [CrossRef] [PubMed] [Google Scholar]
  • Coddington EJ, Chamberlin ME (1999) Acid/base transport across the midgut of the tobacco hornworm, Manduca sexta. J. Insect Physiol. 45: 493–500 [Google Scholar]
  • Daniell H, Khan MS, Allison L (2002) Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci. 7: 84–91 [CrossRef] [PubMed] [Google Scholar]
  • de Vries J, Heine M, Harms K, Wackernagel W (2003) Spread of recombinant DNA by roots and pollen of transgenic potato plants, identified by highly specific biomonitoring using natural transformation of an Acinetobacter sp. Appl. Environ. Microbiol. 69: 4455–4462 [Google Scholar]
  • Deni J, Message B, Chioccioli M, Tepfer D (2005) Unsuccessful search for DNA transfer from transgenic plants to bacteria in the intestine of the tobacco horn worm Manduca sexta. Transgenic Res. 14: 207–215 [Google Scholar]
  • Dow JAT (1984) Extremely high pH in biological systems: a model for carbonate transport. American J. Physiol. 246: 633–635 [Google Scholar]
  • Dow JAT (1992) pH gradients in lepidopteran midgut. J. Experimental Biol. 172: 355–375 [Google Scholar]
  • Dröge M, Pühler A, Selbitschka W (1998) Horizontal gene transfer as a biosafety issue: A natural phenomenon of public concern. J. Biotechnol. 64: 75–90 [Google Scholar]
  • Duggan PS, Chambers PA, Heritage J, Forbes JM (2000) Survival of free DNA encoding antibiotic resistance from transgenic maize and the transformation activity of DNA in ovine saliva, ovine rumen fluid and silage effluent. FEMS Microbiol. Lett. 191: 71–77 [CrossRef] [PubMed] [Google Scholar]
  • Duggan PS, Chambers PA, Heritage J, Forbes JM (2003) Fate of genetically modified maize DNA in the oral cavity and rumen of sheep. British J. Nutrition 89: 159–166 [Google Scholar]
  • Evans HE (1985) The tobacco hornworm. In The Pleasures of Entomology, Smithsonian Instiution, pp 145–156 [Google Scholar]
  • Forsman A, Ushameckis D, Bindra A, Yun Z, Blomberg J (2003) Uptake of amplifiable fragments of retrotransposon DNA from the human alimentary tract. Mol. Genet. Genomics 270: 362–368 [CrossRef] [PubMed] [Google Scholar]
  • Gebhard F, Smalla K (1998) Transformation of Acinetobacter sp. strain BD413 by transgenic sugar beet DNA. Appl. Environ. Microbiol. 64: 1550–1554 [Google Scholar]
  • Giordana B, Leonardi MG, Casartelli M, Consonni P, Parenti P (1998) K+-neutral amino acid symport of Bombyx mori larval midgut: a system operative in extreme conditions. Am. J. Physiol.-Reg. I 274: 1361–1371 [Google Scholar]
  • Heritage J (2004) The fate of transgenes in the human gut. Nature Biotechnol. 22: 170–172 [Google Scholar]
  • Heritage J (2005) Transgenes for tea? Trends Biotechnol. 23: 17–21 [Google Scholar]
  • Jelenic S (2003) Controversy associated with the common component of most transgenic plants – kanamycin resistance marker gene. J. Faculty Food Technol. Biotechnol. 41: 183–190 [Google Scholar]
  • Kay E, Vogel TM, Bertolla F, Nalin R, Simonet P (2002) In situ transfer of antibiotic resistance genes from transgenic (transplastomic) tobacco plants to bacteria. Appl. Environ. Microbiol. 68: 3345–3351 [CrossRef] [PubMed] [Google Scholar]
  • Kharazmi M, Sczesny S, Blaut M, Hammes WP, Hertel C (2003) Marker rescue studies of the transfer of recombinant DNA to Streptococcus gordonii in vitro, in foods and gnotobiotic rats. Appl. Environ. Microbiol. 69: 6121–6127 [Google Scholar]
  • Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev. 58: 563–602 [PubMed] [Google Scholar]
  • Magrini V, Creighton C, White D, Hartzell PL, Youderian P (1998) The aadA gene of plasmid R100 confers resistance to spectinomycin and streptomycin in Myxococcus xanthus. J. Bacteriol. 180: 6757–6760 [Google Scholar]
  • Martin-Orue SM, O'Donnell AG, Arino J, Netherwood T, Gilbert HJ, Mathers JC (2002) Degradation of transgenic DNA from genetically modified soya and maize in human intestinal simulations. British J. Nutrition 87: 533–542 [CrossRef] [PubMed] [Google Scholar]
  • McAllan AB (1980) The degradation of nucleic acids in and the removal of breakdown products from the small-intestines of steers. British J. Nutrition 44: 99–112 [CrossRef] [Google Scholar]
  • Mercer DK, Scott KP, Bruce-Johnson WA, Glover LA, Flint HJ (1999) Fate of free DNA and transformation of the oral bacterium Streptococcus gordonii DL1 by plasmid DNA in human saliva. Appl. Environ. Microbiol. 65: 6–10 [Google Scholar]
  • Moffett D, Cummings S (1994) Transepithelial potential and alkalization in an in situ preparation of tobacco hornworm (Manduca sexta) midgut. J. Experimental Biol. 194: 341–345 [Google Scholar]
  • Netherwood T, Martin-Orue SM, O'Donnell AG (2004) Assessing the survival of transgenic plant DNA in the human gastrointestinal tract. Nature Biotechnol. 22: 204–209 [Google Scholar]
  • Nielsen KM, Bones AM, Smalla K, van Elsas JD (1998) Horizontal gene transfer from transgenic plants to terrestrial bacteria - a rare event? FEMS Microbiol. Rev. 22: 79–103 [Google Scholar]
  • Nielsen KM, van Elsas JD, Smalla K (2000) Transformation of Acinetobacter sp. strain BD413 (pFG4Formula nptII) with transgenic plant DNA in soil microcosms and effects of kanamycin on selection of transformants. Appl. Environ. Microbiol. 66: 1237–1242 [Google Scholar]
  • Paget E, Lebrun M, Freyssinet G, Simonet P (1998) The fate of recombinant plant DNA in soil. European J. Soil Biol. 34: 81–88 [Google Scholar]
  • Palka-Santini M, Schwarz-Herzke B, Hosel M, Renz D, Auerochs S, Brondke H, Doerfler W (2003) The gastrointestinal tract as the portal of entry for foreign macromolecules: fate of DNA and proteins. Mol. Gen. Genomics 270: 201–215 [Google Scholar]
  • Palmen R, Vosman B, Buijsman P, Breek CKD, Hellingwerf KJ (1993) Physiological characterization of natural transformation in Acinetobacter calcoaceticus. J. Gen. Microbiol. 139: 295–305 [Google Scholar]
  • Raw JD (1983) Biochemistry, Harper and Row Publishers, New York, Inc, p 358 [Google Scholar]
  • Sandvang D (1999) Novel streptomycin and spectinomycin resistance gene as a gene cassette within a class 1 integron isolated from Escherichia coli. Antimicrob. Agents Chemotherapy 43: 3036–3038 [Google Scholar]
  • Schubbert R, Hohlweg U, Renz D, Doerfler W (1998) On the fate of orally ingested foreign DNA in mice: chromosomal association and placental transmission to the fetus. Mol. Gen. Genet. 259: 569–576 [Google Scholar]
  • Schubbert R, Renz D, Schmitz B, Doerfler W (1997) Foreign (M13) DNA ingested by mice reaches peripheral leukocytes, spleen, and liver via the intestinal wall mucosa and can be covalently linked to mouse DNA. Proc. Natl. Acad. Sci. USA 94: 961–966 [Google Scholar]
  • Snyder MJ, Walding JK, Feyereisen R (1994) Metabolic fate of the allelochemical nicotine in the tobacco hornworm Manduca sexta. Insect Biochem. Mol. Biol. 24: 837–846 [Google Scholar]
  • Tebbe CC, Vahjen W (1993) Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl. Environ. Microbiol. 59: 2657–2665 [PubMed] [Google Scholar]
  • Waterhouse DF (1949) The hydrogen ion concentration in the alimentary canal of larval and adult Lepidoptera. Australian J. Sci. Res. Ser. B 132 428–437 [Google Scholar]
  • Wilcks A, van Hoek AHAM, Joosten RG, Jacobsen BBL, Aarts HJM (2004) Persistence of DNA studied in different ex vivo and in vivo rat models simulating the human gut situation. Food Chem. Toxicol. 42: 493–502 [Google Scholar]
  • Wink M, Theile V (2002) Alkaloid tolerance in Manduca sexta and phylogenetically related sphingids (Lepidoptera: Sphingidae). Chemoecology 12: 29–46 [Google Scholar]
  • Yuan YJ, Lu ZX, Wu N, Huang LJ, Lü FX, Bie XM (2005) Isolation and preliminary characterization of a novel nicotine-degrading bacterium, Ochrobactrum intermedium DN2. Int. Biodeter. Biodegr. 56: 45–50 [Google Scholar]