Free Access
Issue
Environ. Biosafety Res.
Volume 5, Number 2, April-June 2006
Page(s) 89 - 104
DOI https://doi.org/10.1051/ebr:2006016
Published online 22 November 2006
  • Broothaerts W (2003) New findings in apple S-genotype analysis resolve previous confusion and request the re-numbering of some S-alleles. TAG 106: 703–714 [Google Scholar]
  • Eastham K, Sweet J (2002) Genetically modified organisms (GMOs): the significance of gene flow through pollen transfer. Environ. Issue Rep. 28: 75 p [Google Scholar]
  • Filiti N, Montalti P (1982) In vitro germination and tube growth of apple pollen as affected by cold storage. Riv. Ortoflorofrutt. It. 66: 361–368 [Google Scholar]
  • Fischer C (1987) Neue Ergebnisse aus befruchtungsbiologi-schen Untersuchungen an Apfel. Gartenbau 34: 272–275 [Google Scholar]
  • Free JB (1962) The effect of distance from pollinizer cultivars on the fruit set on trees in plum and apple orchards. J. Hort. Sci. 37: 262–271 [Google Scholar]
  • Free JB (1966) The foraging areas of honeybees in an orchard of standard apple trees. J. Appl. Ecol. 3: 261–268 [Google Scholar]
  • Free JB, Spencer-Booth Y (1964) The effect of distance from pollinizer cultivars on the fruit set of apple, pear and sweet-cherry trees. J. Hort. Sci. 39: 54–60 [Google Scholar]
  • Gerdemann-Knörk, Tegeder M (1997) Kompendium der für Freisetzung relevanten Pflanzen; hier Brassicaceae, Beta vulgaris, Linum usitatissimum. Texte des Umweltbundesamtes 38: 1–221 [Google Scholar]
  • Hanelt P (2006) Mansfeld’s Encyclopedia of Agricultural and Horticultural Crops. Vol. 1 [Google Scholar]
  • Hanke V, Geider K, Richter K (2003) Transgenic apple plants expressing viral EPS-depolymerase: evaluation of resistance to the phytopathogenic bacterium Erwinia amylovora. In Vasil IK, ed. Plant Biotechnol. 2002 and beyond pp. 153–157 [Google Scholar]
  • Hanna WW, Burton GW (1992) Genetics of red and purple plant color in pearl millet. J. Heredity 83: 386–388 [Google Scholar]
  • Hokanson SC, Szewc-McFadden AK, Lamboy WF, McFerson JR (1998) Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus × domestica Borkh. core subset collection. TAG 97: 671–683 [CrossRef] [Google Scholar]
  • Janssen I, Geissler S, Müller W (1995) Analyse ökologischer Auswirkungen von land- und forstwirtschaftlichen Nutzpflanzen und eingeführten standortfremden Pflanzen. Wien: Bericht des Österreichischen Ökologischen Instituts. [Google Scholar]
  • Kron P, Husband BC, Kevan PG (2001a) Across- and along-row pollen dispersal in high-density apple orchards: Insights from allozyme markers. J. Hort. Sci. Biotechnol. 76: 286–294 [Google Scholar]
  • Kron P, Husband BC, Kevan PG, Belaoussoff S (2001b) Factors affecting pollen dispersal in high-density apple orchards. HortScience 36:1039–1046 [Google Scholar]
  • Lapins KO (1976) Inheritance of compact growth type in apple. J. Am. Soc. Hort. Sci. 101: 133–135 [Google Scholar]
  • Lespinasse Y, Godicheau M (1980) Création et description d’une plante haploïde de pommier (Malus pumila Mill.). Ann. Amelior. Plante 30: 39–44 [Google Scholar]
  • Lespinasse Y, Godicheau M, Duron M (1983) Potential value and method of producing haploids in the apple tree, Malus pumila (Mill.). Acta Hort. 131: 223–229 [Google Scholar]
  • Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van de Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol. Breed. 10: 217–241 [CrossRef] [Google Scholar]
  • Mayer DF, Johansen CA, Lunden JD (1989) Honey bee foraging behavior on ornamental crabapple pollenizers and commercial apple cultivars. HortScience 24: 510–512 [Google Scholar]
  • Milutinovic M, Surlan-Momirovic G, Nikolic D (1996) Relationship between pollinizer distance and fruit set in apple. Acta Hort. 423: 91–94 [Google Scholar]
  • Neuroth B (1997) Kompendium der für die Freisetzung relevanten Pflanzen; hier Solanaceae, Poaceae, Leguminosae. Texte des Umweltbundesamtes 62: 1–341 [Google Scholar]
  • O'Rourke D, Janick J, Sansavini S (2003) World apple cultivar dynamics. Chronica Hort. 43: 10–13 [Google Scholar]
  • Ottenschlager I, Barinova I, Voronin V, Dahl M, Heberle-Bors E, Touraev A (1999) Green fluorescent protein (GFP) as a marker during pollen development. Transgenic Res. 8: 279–294 [CrossRef] [PubMed] [Google Scholar]
  • Petri C, Burgos L (2005) Transformation of fruit trees. Useful breeding tool or continued future prospect? Transgenic Res. 14: 15–26 [CrossRef] [PubMed] [Google Scholar]
  • Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol. Breed. 2: 225–238 [CrossRef] [Google Scholar]
  • Raybould AF, Gray AJ (1993) Genetically-modified crops and hybridization with wild relatives: a UK perspective. J. Appl. Ecol. 30: 199–219 [CrossRef] [Google Scholar]
  • Schütte G, Stirn S, Beusmann V (2001) Transgene Nutzpflanzen. Basel, Boston, Berlin: Birkhäuser Verlag [Google Scholar]
  • UrRahman H, James DJ, Hadonou AM, Caligari PDS (1997) The use of RAPD for verifying the apomictic status of seedlings of Malus species. TAG 95: 1080–1083 [CrossRef] [Google Scholar]
  • Wertheim SJ (1991) Malus cv Baskatong as an indicator of pollen spread in intensive apple orchards. J. Hort. Sci. 66: 635–642. [Google Scholar]
  • Williams RR, Church RM, Wood DES, Flook VA (1979) Use of an anthocyanin progeny marker to determine the value of hive pollen dispensers in apple orchards. J. Hort. Sci. 54: 75–78. [Google Scholar]
  • Zwintzscher M (1974) Malus pumila var. niedzwetzkyana als Partner in der Apfelzüchtung. Z. Pflanzenzüchtung 74: 303–310 [Google Scholar]