Free Access
Environ. Biosafety Res.
Volume 5, Number 2, April-June 2006
Page(s) 77 - 87
Published online 08 December 2006
  • Barry GF, Kishore GM (October 31, 1995) Glyphosate tolerant plants. United States, Patent No. 5463175 [Google Scholar]
  • Barry GF, Kishore GM, Padgette SR, Taylor ML, Kolacz KH, Weldon M, Re DB, Eichholtz DA, Fincher K, Hallas L (1992) Inhibitors of amino acid biosynthesis: Strategies for imparting glyphosate tolerance to crop plants. In Singh BK, Flores HE, Shannon JC, eds, Biosynthesis and Molecular Regulation of Amino Acids in Plants, American Society Plant Physiologists, Rockville, MD, USA, pp 139–145 [Google Scholar]
  • Becker HC, Damgaard C, Karlsson B (1992) Environmental variation for outcrossing rate in rapeseed (Brassica napus). Theor. Appl. Genet. 84: 303–306 [PubMed] [Google Scholar]
  • Beckie HJ, Warwick SI, Nair H, Séguin-Swartz G (2003) Gene flow in commercial fields of herbicide-resistant canola (Brassica napus). Ecol. Appl. 13: 1276–1294 [CrossRef] [Google Scholar]
  • Bing DJ, Downey RK, Rakow GFW (1996) Hybridizations among Brassica napus, B. rapa and B. juncea and their two weedy relatives B. nigra and Sinapis arvensis under open pollination conditions in the field. Plant Breed. 115: 470–473 [CrossRef] [Google Scholar]
  • Comai L, Facciotti D, Hiatt WR, Thompson G, Rose RE, Stalker DM (1985) Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature 317: 741–744 [CrossRef] [Google Scholar]
  • Crawley MJ, Brown SL, Hails RS, Kohn DD, Rees M (2001) Transgenic crops in natural habitats. Nature 409: 682–683 [CrossRef] [PubMed] [Google Scholar]
  • EFSA (the European Food Safety Authority) (2004) Guidance document of the scientific panel on genetically modified organisms for the risk assessment of genetically modified plants and derived food and feed. [Google Scholar]
  • Friesen LF, Nelson AG, Van Acker RC (2003) Evidence of contamination of pedigreed canola (Brassica napus) seedlots in western Canada with genetically engineered herbicide resistance traits. Agron. J. 95: 1342–1347 [CrossRef] [Google Scholar]
  • Hall L, Topinka K, Huffman J, Davis L, Good A (2000) Pollen flow between herbicide-resistant Brassica napus is the cause of multiple-resistant B. napus volunteers. Weed Sci. 48: 688–694 [CrossRef] [Google Scholar]
  • ISAAA (International Service for the Acquisition of Agri-biotech Applications) (2006) ISAAA Briefs 34-2005: Global Status of Commercialized Biotech/GM Crops: 2005. [Google Scholar]
  • Jørgensen RB, Andersen B, Landbo L, Mikkelsen TR (1996) Spontaneous hybridization between oilseed rape (Brassica napus) and weedy relatives. Acta Horticul. 407: 193–197 [Google Scholar]
  • Mariani C, De Beuckeleer M, Truettner J, Leemans J, Goldberg RB (1990) Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347: 737–741 [CrossRef] [Google Scholar]
  • Mariani C, Gossele V, De Beuckeleer M, De Block M, Goldberg RB, De Greef W, Leemans J (1992) A chimaeric ribonuclease-inhibitor gene restores fertility to male sterile plants. Nature 357: 384–387 [CrossRef] [Google Scholar]
  • OECD (Organisation for Economic Cooperation and Development) (1997) Series on harmonization of regulatory oversight in biotechnology No.7; Consensus document on the biology of Brassica napus L. (oilseed rape). [Google Scholar]
  • OGTR (Office of the Gene Technology Regulator) (2002) The biology and ecology of canola (Brassica napus). [Google Scholar]
  • Padgette SR, Kolacz KH, Delannay X, Re DB, Lavallee BJ, Tinius CN, Rhodes WK, Otero YI, Barry GF, Eichholtz DA, Peschke VM, Nida DL, Taylor NB, Kishore GM (1995) Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Sci., 35: 1451–1461 [Google Scholar]
  • Saji H, Nakajima N, Aono M, Tamaoki M, Kubo A, Wakiyama S, Hatase Y, Nagatsu M (2005) Monitoring the escape of transgenic oilseed rape around Japanese ports and roadsides. Environ. Biosafety Res. 4: 217–222 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Simard MJ, Légère A, Séguin-Swartz G, Nair H, Warwick S (2005) Fitness of double vs. single herbicide-resistant canola source. Weed Sci. 53: 489–498 [CrossRef] [Google Scholar]
  • Stalker DM, McBride KE, Malyj LD (1988) Herbicide resistance in transgenic plants expressing a bacterial detoxification gene. Science 242: 419-423 [CrossRef] [PubMed] [Google Scholar]
  • Thompson CJ, Movva NR, Tizard R, Crameri R, Davies JE, Lauwereys M, Botterman J (1987) Characterization of the herbicide-resistance gene bar from Streptomyces hygroscopicus. EMBO J. 6: 2519–2523 [Google Scholar]
  • USDA (United States Department of Agriculture) (2005a) USDA Foreign Agricultural Service, Global Agriculture Information Network Report, Australia Biotechnology Agricultural Biotechnology Annual Report 2005, GAIN Report Number AS5024. [Google Scholar]
  • USDA (United States Department of Agriculture) (2005b) USDA Foreign Agricultural Service, Global Agriculture Information Network Report, Canada Biotechnology Agricultural Biotechnology Report 2005, GAIN Report Number CA5044. [Google Scholar]
  • Warwick S, Beckie HJ, Simard MJ, Légère A, Nair H, Séguin-Swartz G (2004) Environmental and agronomic consequences of herbicide-resistant (HR) canola in Canada. In Den Nijs HCM, Bartsch D, Sweet J, eds, Introgression from Genetically Modified Plants into Wild Relatives, CABI publishing, Wallingford, Oxfordshire, UK, pp 323–337 [Google Scholar]
  • Williams IH, Martin AP, White RP (1986) The pollination requirements of oil-seed rape (Brassica napus L.). J. Agric. Sci. 106: 27–30 [CrossRef] [Google Scholar]