Free Access
Issue
Environ. Biosafety Res.
Volume 5, Number 1, January-March 2006
Page(s) 37 - 46
DOI https://doi.org/10.1051/ebr:2006012
Published online 19 September 2006
  • Ahrenholz I, Harms K, de Vries J, Wackernagel W (2000) Increased killing of Bacillus subtilis on the hair roots of transgenic T4 lysozyme-producing potatoes. Appl. Environ. Microb. 66: 1862–1865
  • Biologische Bundesanstalt für Land- und Forstwirtschaft (2001) Entwicklungsstadien mono- und dikotyler Pflanzen. BBCH Monografie, 2. Auflage, S. 45–50
  • Brady NC (1990) The nature and properties of soil. Macmillan Publishing Company, New York
  • Bruinsma M, Kowalchuk GA, van Veen JA (2003) Effects of genetically modified plants on microbial communities and processes in soil. Biol. Fertil. Soils 37: 329–337
  • Brusetti L, Francia P, Bertolini C, Pagliuca A, Borin S, Sorlini C, Abruzzese A, Sacchi G, Viti C, Giovannetti L, Giuntini E, Bazzicalupo M, Daffonchio D (2004) Bacterial communities associated with the rhizosphere of transgenic Bt 176 maize (Zea mays) and its non transgenic counterpart. Plant Soil 266: 11–21 [CrossRef]
  • Catchpole GS, Beckmann M, Enot, DP, Mondhe M, Zywicki B, Taylor J, Hardy N, Smith A, King RD, Kell DB, Fiehn O, Draper J (2005) Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops. Proc. Natl. Acad. Sci. USA 102: 14458–14462 [CrossRef]
  • Cowgill SE, Bardgett RD, Kiezenbrink DT, Atkinson HJ (2002) The effect of transgenic nematode resistance on non-target organisms in the potato rhizosphere. J. Appl. Ecol. 39: 915–923
  • De Vries J, Harms K, Broer I, Kriete G, Mahn A, Düring K, Wackernagel W (1999) The acteriolytic activity in transgenic Potato. Syst. Appl. Microbiol. 22: 280–286
  • Düring K, Mahn A (1999) Freisetzung und Resistenzprüfung transgener Lysozym-Kartoffeln. In: Freisetzungsbegleitende Sicherheitsforschung mit gentechnisch veränderten Pflanzen und Mikroorganismen (Schiemann J, Hrg). Proceedings zum BMBF-Workshop, BBA Braunschweig, 25-26 Mai 1998. BEO (Projektträger Biologie, Energie, Umwelt des BMBF), Jülich. S. 39-44
  • Gransee A, Wittenmayer L (2000) Qualitative and quantitative analysis of water-soluble root exudates in relation to plant species and development. J. Plant Nutr. Soil Sci. 163: 381–385 [CrossRef]
  • Hausmann L, Töpfer R (1999) Entwicklung von Plasmid-Vektoren. In Brauer D, Röbbelen G, Töpfer R, eds, BioEngineering für Rapssorten nach Maß, Vorträge für Pflanzenzüchtung 45, 153–171
  • Heuer H, Kroppenstedt RM, Lottmann J, Berg G, Smalla K (2002) Effects of T4 lysozyme release from transgenic potato roots on bacterial rhizosphere communities are negligible relative to natural factors. Appl. Environ. Microb. 68: 1325–1335 [CrossRef] [PubMed]
  • Hütsch BW, Augustin J, Merbach W (2002) Plant rhizodeposition – an important source for carbon turnover in soils. J. Plant Nutr. Soil Sci. 165: 397–407 [CrossRef]
  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol. 163: 459–480
  • Kjøller R, Rosendahl S (2000) Effect of fungicides on arbuscular mycorrhizal fungi: different responses in alkaline phosphatase activity of external and internal hyphae. Biol. Fertil. Soils 31: 361–365 [CrossRef]
  • Kowalski BR, Bender CF (1972) Pattern recognition. A powerful approach to interpreting chemical data. J. Am. Chem. Soc. 94: 5632–5639 [CrossRef]
  • Kuzyakov Y, Sinyakina S (2001) A novel method for separating root-derived organic compounds from root respiration in non-sterilized soils. J. Plant Nutr. Soil Sci. 164: 511–517 [CrossRef]
  • Kuzyakov Y, Leinweber P, Sapronov D, Eckhardt K-U (2003) Quantitative assessment of root exudates in non-sterile soil by analytical pyrolysis. J. Plant Nutr. Soil Sci. 166: 719–723 [CrossRef]
  • Leinweber P, Schulten H-R, Kalbitz K, Meißner R, Janke H (2001) Fulvic acid composition in degraded fenlands. J. Plant Nutr. Soil Sci. 164: 371–379 [CrossRef]
  • Lottmann J, Heuer H, Smalla K, Berg G (1999) Influence of transgenic T4-lysozyme-producing potato plants on potentially beneficial plant associated bacteria. FEMS Microbiol. Ecol. 29: 365–377 [CrossRef]
  • Melnitchouck A, Leinweber P, Eckhardt K-U, Beese R (2005) Qualitative differences between day- and nighttime rhizodeposition in maize (Zea mays L.) as investigated by pyrolysis-field ionization mass spectrometry. Soil Biol. Biochem. 37: 155–162 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Milling A, Smalla K, Maidl FX, Schloter M, Munch JC (2004) Effects of transgenic potatoes with an altered starch composition on the diversity of soil and rhizosphere bacteria and fungi. Plant Soil 266: 23–39 [CrossRef]
  • Paul EA, Clark FE (1996) Soil Microbiology and Biochemistry, 2nd ed, Academic Press, San Diego
  • Protein Data Bank (2003) http://www.rcsb.org/pdb/cgi/explore.cgi?job=download;pdbId=256L;page=&opt=show&format=mmCIF&pre=1 (accessed March 26, 2003)
  • Rausch C, Daram P, Brunner S, Jansa J, Lalol M, Leggewie G, Amrhein N, Bucher M (2001) A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414: 462–466 [CrossRef] [PubMed]
  • Schulten H-R (1996) Direct Pyrolysis-Mass Spectrometry of Soils: A Novel Tool in Agriculture, Ecology, Forestry and Soil Science. In Yamasaki S, Boutton TW, eds, Mass spectrometry of soils, Marcel Dekker, New York, pp 373–436
  • Schulten H-R, Leinweber P (1999) Thermal stability and composition of mineral-bound organic matter in density fractions of soil. Eur. J. Soil Sci. 50: 237–248 [CrossRef]
  • Schulten H-R, Leinweber P, Jandl G (2002) Analytical pyrolysis of humic substances and dissolved organic matter in water. In Frimmel FH, Abbt-Braun G, Heumann K-G, Hock B, Lüdemann H-D, Spiteller M, eds, Refractory Organic Substances in the Environment, Wiley-VCH, Weinheim, pp 163–187
  • Schulten H-R, Leinweber P, Schnitzer M (1998) Analytical Pyrolysis and Computer Modelling of Humic and Soil Particles. In Structure and Surface Reactions of Soil Particles, John Wiley & Sons, pp 281–324
  • Sessitsch A, Gyamfi S, Tscherko D, Gerzabek MH, Kandeler E (2004) Activity of microorganisms in the rhizosphere of herbicide treated and untreated transgenic glufosinate-tolerant and wildtype oilseed rape grown in containment. Plant Soil 266: 105–116 [CrossRef]
  • Simek M, Hopkins DW, Kalcik J, Picek T, Santruckova H, Stana J, Travnik K (1999) Biological and chemical properties of arable soils affected by long-term organic and inorganic fertilizer applications. Biol. Fertil. Soils 29: 300–308 [CrossRef]
  • Sorge C, Schnitzer M, Schulten H-R (1993) In-source pyrolysis-field ionization mass spectrometry and Curie-point gas chromatography/mass spectrometry of amino acids in humic substances and soils. Biol. Fertil. Soils 16: 100–110 [CrossRef]
  • StatSoft, Inc. (2002) Electronic Statistics Textbook. Tulsa, OK: StatSoft. http://www.statsoft.com/textbook/stathome.html (accessed August 5, 2002)
  • Tabatabai MA (1994) Soil enzymes. In Weaver RW, Angle S, Bottomley P, Bezdicek D, Smith S, Tabatabai MA, Wollum A, eds, Methods of Soil Analysis. Part 2. Microbiological and Biochemical Properties, Soil Science Society of America, Madison/WI
  • Thalmann A (1968) Zur Methodik der Bestimmung der Dehydrogenaseaktivität im Boden mittels Triphenylte- trazoliumchlorid (TTC), Landwirtsch. Forsch. 21: 249– 258
  • Verhoef HA, van Gestel CAM (1995) Methods to Assess the Effects of Chemicals on Soils. In Linthurst RA, Bourdeau P, Tardiff RG, eds, Methods to Assess the Effects of Chemicals On Ecosystems, John Wiley & Sons, Chichester, pp 223– 257
  • Wood M (1995) Environmental Soil Biology, Blackie Academic and Professional, Glasgow, London