Free Access
Environ. Biosafety Res.
Volume 4, Number 4, October-December 2005
Page(s) 235 - 242
Published online 22 June 2006
  • Barret V, Dixon RK, Lemke PA (1990) Genetic transformation of a mycorrhizal fungus. Appl. Microbiol. Biot. 33: 313–316 [CrossRef] [Google Scholar]
  • Bills S, Podila GK, Hiremath S (1999) Genetic engineering of an ectomycorrhizal fungus Laccaria bicolor for use as a biological control agent. Mycologia 91: 237–242 [CrossRef] [Google Scholar]
  • Boerjan W, Baucher M, Chabbert B, PetitConil M, Leple JC, Pilate G, Cornu D, Monties B, Inze D, VanDoorsselaere J, Jouanin L, VanMontagu M, Tsai CJ, Podila GK, Joshi CP, Chiang VL (1997) Micropropagation, genetic engineering, and molecular biology of Populus. US Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO [Google Scholar]
  • Bryngelsson T, Gustafsson M, Green B, Lind C (1988) Uptake of host DNA by the parasitic fungus Plasmodiophora brassicae. Physiol. Mol. Plant P. 33: 163–171 [Google Scholar]
  • Chen XY, Hampp R (1993) Sugar uptake by protoplasts of the ectomycorrhizal fungus, Amanita muscaria (L. ex fr.) Hooker. New Phytol. 125: 601–608 [CrossRef] [Google Scholar]
  • Combier JP, Melayah D, Raffier C, Pepin R, Marmeisse R, Gay G (2004) Nonmycorrhizal (myc-) mutants of Hebeloma cylindrosporum obtained through insertional mutagenesis. Mol. Plant Microbe Int. 17: 1029–1038 [CrossRef] [Google Scholar]
  • De Vries J, Wackernagel W (2002) Integration of foreign DNA during natural transformation of Acinetobacter sp. by homology-facilitated illegitimate recombination. Proc. Natl. Acad. Sci. USA 99: 2094–2099 [CrossRef] [Google Scholar]
  • Fincham JR (1989) Transformation in fungi. Microbiol. Rev. 53: 148–170 [PubMed] [Google Scholar]
  • Garcia-Vallvé S, Romeu A, Palau J (2000) Horizontal gene transfer of glycosyl hydrolases of the rumen fungi. Mol. Biol. Evol. 17: 352–361 [PubMed] [Google Scholar]
  • Gebhard F, Smalla K (1998) Transformation of Acinetobacter sp. strain BD413 by transgenic sugar beet DNA. Appl. Environ. Microbiol. 64: 1550–1554 [PubMed] [Google Scholar]
  • Gebhard F, Smalla K (1999) Monitoring field releases of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene transfer. FEMS Microbiol. Ecol. 28: 261–272 [CrossRef] [Google Scholar]
  • Hampp R, Ecke M, Schaeffer C, Wallenda T, Wingler A, Kottke I, Sundberg B (1996) Axenic mycorrhization of wild type and transgenic hybrid aspen expressing T-DNA indoleacetic acid-biosynthetic genes. Trees 11: 59–64 [CrossRef] [Google Scholar]
  • Hampp R, Stülten C, Nehls U (1998) Isolation and regeneration of protoplasts from ectomycorrhizal fungi. In Varma A, ed, Modern manual of mycorrhiza, Springer-Verlag, Berlin Heidelberg, Germany, pp 115–126 [Google Scholar]
  • Hanif M, Pardo AG, Gorfer M, Raudaskoski M (2002) T-DNA transfer and integration in the ectomycorrhizal fungus Suillus bovinus using hygromycin B as a selectable marker. Curr. Genet. 41: 183–188 [CrossRef] [PubMed] [Google Scholar]
  • Hoffmann T, Golz C, Schieder O (1994) Foreign DNA sequences are received by a wild type strain of Aspergillus niger after co culture with transgenic higher plants. Curr. Genet. 27: 70–76 [CrossRef] [PubMed] [Google Scholar]
  • Koncz CJ, Schell J, Redei GP (1992) Methods in Arabidopsis research, World scientific, London [Google Scholar]
  • Kottke I, Guttenberger M, Hampp R, Oberwinkler F (1987) An in vivo method for establishing mycorrhizae on coniferous tree seedlings. Trees 1: 191–194 [Google Scholar]
  • Kottke I, Oberwinkler F (1987) The cellular structure of the Hartig net: coenocytic and transfer-cell like organization. Nord. J. Bot. 7: 85–95 [CrossRef] [Google Scholar]
  • Lapierre C, Pollet B, Petit-Conil M, Toval G, Romero J, Pilate G, Leplé JC, Boerjan W, Ferret VV, De Nadai V, Jouanin L (1999) Structural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial kraft pulping. Plant Physiol. 119: 153–164 [CrossRef] [PubMed] [Google Scholar]
  • Leplé JC, Brasileiro ACM, Michel MF, Delmotte F, Jouanin L (1992) Transgenic poplars: Expression of chimeric genes using four different constructs. Plant Cell Rep. 11: 137–141 [PubMed] [Google Scholar]
  • Magee PT, Gale C, Berman J, Davis D (2003) Molecular genetic and genomic approaches to the study of medically important fungi. Infect. Immun. 71: 2299–2309 [CrossRef] [PubMed] [Google Scholar]
  • Marmeisse R, Gay G, Debaud JC, Casselton LA (1992) Genetic transformation of the symbiotic basidiomycete fungus Hebeloma cylindrosporum. Curr. Genetics 22: 41–45 [Google Scholar]
  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8: 4321–4325 [CrossRef] [PubMed] [Google Scholar]
  • Nehls U, Friedrich T, Schmiede A, Ohnishi T, Weiss H (1992) Characterization of assembly intermediates of NADH: ubiquinone oxidoreductase (complex I) accumulated in Neurospora mitochondria by gene disruption. J. Mol. Biol. 227: 1032–1042 [CrossRef] [PubMed] [Google Scholar]
  • Nehls U, Mikolajewski S, Ecke M, Hampp R (1999) Identification and expression analysis of two fungal cDNAs regulated by ectomycorrhiza and fruit body formation. New Phytol. 144: 195–202 [CrossRef] [Google Scholar]
  • Nielsen KM, Elsas JD, Smalla K (2000) Transformation of Acinetobacter sp. strain BD413 (pFG4DnptII) with transgenic plant DNA in soil microcosms and effects of kanamycin on selection of transformants. Appl. Environ. Microb. 66: 1237–1242 [CrossRef] [PubMed] [Google Scholar]
  • Olmedo-Monfil V, Cortes-Penagos C, Herrera-Estrella A (2004) Three decades of fungal transformation: key concepts and applications. Meth. Molec. Biol. 267: 297–313 [Google Scholar]
  • Owen MDK (2000) Current use of transgenic herbicide-resistant soybean and corn in the USA. Crop Prot. 19: 765–771 [CrossRef] [Google Scholar]
  • Pardo AG, Hanif M, Raudaskoski M, Gorfer M (2002) Genetic transformation of ectomycorrhizal fungi mediated by Agrobacterium tumefaciens. Brit. Mycol. Soc. Trans. 106: 132–137 [Google Scholar]
  • Ruiz-Diez B (2002) Strategies for the transformation of filamentous fungi. J. Appl. Microbiol. 92: 189–195 [CrossRef] [PubMed] [Google Scholar]
  • Saroha MK, Sridhar P, Malik VS (1998) Glyphosate-tolerant crops: Genes and enzymes. J. Plant Biochem. Biot. 7: 65–72 [Google Scholar]
  • Schaeffer C, Johann P, Nehls U, Hampp R (1996) Evidence for an up-regulation of the host and a down-regulation of the fungal phosphofructokinase activity in ectomycorrhizas of Norway spruce and fly agaric. New Phytol. 134: 697–702 [CrossRef] [Google Scholar]
  • Schlüter K, Fütterer J, Potrykus I (1995) “Horizontal” gene transfer from a transgenic potato line to a bacterial pathogen (Erwinia chrysanthemi) occurs – if at all – at an extremely low frequency. Biotechniques 13: 1094–1098 [CrossRef] [Google Scholar]
  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis: Second edition, Academic Press, London [Google Scholar]
  • Straubinger B, Straubinger E, Wirsel S, Turgeon G, Yoder O (1992) Versatile fungal transformation vectors carrying the selectable bar gene of Streptomyces hygroscopicus. Fungal Genet. Newsl. 39: 82–83 [Google Scholar]
  • Tuominen H, Sitbon F, Jacobsson C, Sandberg G, Olsson O, Sundberg B (1995) Altered growth and wood characteristics in transgenic hybrid aspen expressing Agrobacterium tumefaciens T-DNA indoleacetic acid-biosynthetic genes. Plant Physiol. 109: 1179–1189 [PubMed] [Google Scholar]
  • Warwick SI, Beckie HJ, Small E (1999) Transgenic crops: new weed problems for Canada? Phytoprotection 80: 71–84 [Google Scholar]