Free Access
Issue
Environ. Biosafety Res.
Volume 4, Number 4, October-December 2005
Page(s) 223 - 233
DOI https://doi.org/10.1051/ebr:2006008
Published online 22 June 2006
  • Barker JSF, Butcher JC (1966) A simulation study of quasi-fixation of genes due to random fluctuation of selection intensities. Genetics 53: 261–268 [PubMed] [Google Scholar]
  • Burke JM, Riesenberg LH (2003) Fitness effects of transgenic disease resistance in sunflowers. Science 300: 1250 [CrossRef] [PubMed] [Google Scholar]
  • Day T, Otto SP (2001) Fitness. In Encyclopedia of life sciences, Nature Publishing Group / www.els.net, pp 1–6 [Google Scholar]
  • Drake JM (2004) Allee effects and the risk of biological invasion. Risk Analysis 24: 795–802 [CrossRef] [Google Scholar]
  • EFSA – European Food Safety Authority (2004) Opinion of the scientific panel on genetically modified organisms on the use of antibiotic resistance genes as marker genes in genetically modified plants. EFSA J. 48: 1–18 [Google Scholar]
  • Eisen J (2000) Horizontal gene transfer among microbial genomes: new insights from complete genome analysis. Curr. Opin. Genet. Dev. 10: 606–611 [CrossRef] [PubMed] [Google Scholar]
  • Elena SF, Ekunwe L, Hajela N, Oden SA, Lenski RE (1998) Distribution of fitness effects caused by random insertion mutations in Escherichia coli. Genetica 102-103: 349–358 [Google Scholar]
  • Feil EJ, Spratt BG (2001) Recombination and the population structure of bacterial pathogens. Annu. Rev. Microbiol. 55: 561–590 [CrossRef] [PubMed] [Google Scholar]
  • Fisher RA (1930) The genetical theory of natural selection, Clarendon Press, Oxford [Google Scholar]
  • Futuyma DJ (1998) Evolutionary Biology, 3rd edn, Sinauer Associates, Sunderland [Google Scholar]
  • Haldane JBS (1927) A mathematical theory of natural and artificial selection. Part V. Selection and mutation. Proc. Camb. Phil. Soc. 28: 838–844 [CrossRef] [Google Scholar]
  • Hartl DL, Clark AG (1997) Principles of population genetics, 3rd edn, Sinauer Associates, Sunderland [Google Scholar]
  • Heffernan J, Wahl LM (2002) The effects of genetic drift in experimental evolution. Theor. Popul. Biol. 62: 349–356 [CrossRef] [PubMed] [Google Scholar]
  • Heinemann JA, Traavik T (2004) Problems in monitoring horizontal gene transfer in field trials of transgenic plants. Nat. Biotechnol. 22: 1105–1109 [CrossRef] [PubMed] [Google Scholar]
  • Imhof M, Schlötterer C (2001) Fitness effects of advantageous mutations in evolving Escherichia coli populations. Proc. Natl. Acad. Sci. USA 98: 1113–1117 [CrossRef] [Google Scholar]
  • Itoh Y, Tainaka K, Sakata T, Tao T, Nakagiri N (2004) Spatial enhancement of population uncertainty near the extinction threshold. Ecol. Model. 174: 191–201 [CrossRef] [Google Scholar]
  • Kimura M (1954) Process leading to quasi-fixation of genes in natural populations due to random fluctuation of selection intensities. Genetics 39: 280–295 [PubMed] [Google Scholar]
  • Kimura M (1957) Some problems of stochastic-processes in genetics. Ann. Math. Stat. 28: 882–901 [CrossRef] [Google Scholar]
  • Kimura M (1962) On the probability of fixation of mutant genes in a population. Genetics 47: 713–719 [PubMed] [Google Scholar]
  • Kimura M (1983) The neutral theory of molecular evolution, Cambridge University Press, Cambridge [Google Scholar]
  • Kimura M, King JL (1979) Fixation of a deleterious allele at one of two “duplicate” loci by mutation pressure and random drift. Proc. Natl. Acad. Sci. USA 76: 2858–2861 [CrossRef] [Google Scholar]
  • Kimura M, Ohta T (1969) Average number of generations until extinction of an individual mutant gene in a finite population. Genetics 61: 763–771 [PubMed] [Google Scholar]
  • Kimura M, Ohta T (1973) The age of a neutral mutant persisting in a finite population. Genetics 75: 199–212 [PubMed] [Google Scholar]
  • Lande R (1994) Risk of population extinction from fixation of new deleterious mutations. Evolution 48: 1460–1469 [CrossRef] [PubMed] [Google Scholar]
  • Lande R (1998) Risk of population extinction from fixation of deleterious and reverse mutations. Genetica 102/103: 21–27 [Google Scholar]
  • Lawrence JG, Hendrix RW, Casjens S (2001) Where are the pseudogenes in bacterial genomes? Trends Microbiol. 9: 535–540 [CrossRef] [PubMed] [Google Scholar]
  • Lawrence JG (2002) Gene transfer in bacteria: speciation without species? Theor. Popul. Biol. 61: 449–460 [CrossRef] [PubMed] [Google Scholar]
  • Lawrence JG, Hendricksen H (2003) Lateral gene transfer: when will adolescence end? Mol. Microbiol. 50: 739–749 [CrossRef] [PubMed] [Google Scholar]
  • Lenski RE, Rose MR, Simpson SC, Tadler SC (1991) Long-term experimental evolution in Escherichia coli. 1. Adaptation and divergence during 2000 generations. Am. Nat. 138: 1315–1341 [Google Scholar]
  • Majewski J, Cohan FM (1998) The effect of mismatch repair and heteroduplex formation on sexual isolation in Bacillus. Genetics 148: 13–18 [Google Scholar]
  • Majewski J, Zawadzki P, Pickerill P, Cohan FM, Dowson CG (2000) Barriers to genetic exchange between bacterial species: Streptococcus pneumonia transformation. J. Bacteriol. 182: 1016–1023 [CrossRef] [PubMed] [Google Scholar]
  • Maruyama T, Kimura M (1974) A note on the speed of gene frequency changes in reverse directions in a finite population. Evolution 28: 161–163 [CrossRef] [PubMed] [Google Scholar]
  • Maruyama T, Kimura M (1975) Moments for the sum of an arbitrary function of gene frequency along a stochastic path of gene frequency change. Proc. Natl. Acad. Sci. USA 72: 1602–1604 [CrossRef] [Google Scholar]
  • Maynard Smith J, Feil EJ, Smith NH (2000) Population structure and evolutionary dynamics of pathogenic bacteria. Bioessays 22: 1115–1122 [CrossRef] [PubMed] [Google Scholar]
  • Nakamura Y, Itoh T, Matsuda H, Gojobori T (2004) Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nat. Genet. 36: 760–766 [CrossRef] [PubMed] [Google Scholar]
  • Nei M, Roychoudhury AK (1973) Probability of fixation and mean fixation time of an overdominant mutation. Genetics 74: 371–380 [PubMed] [Google Scholar]
  • Nielsen KM (2003) An assessment of factors affecting the likelihood of horizontal transfer of recombinant plant DNA to bacterial recipients in the soil and rhizosphere. Collect. Biosafety Rev. 1: 96–149 [Google Scholar]
  • Nielsen KM, Townsend JP (2001) Environmental exposure, horizontal transfer and selection of transgenes in bacterial populations. In Vurro M, Gressel J, Butt T, Harman D, Nuss D, Sands D, St. Leger R, eds, Enhancing biocontrol agents and handling risks, NATO Science Series, Vol. 339, IOS Press, Amsterdam, The Netherlands, pp 145–158 [Google Scholar]
  • Nielsen KM, Townsend JP (2004) Monitoring and modeling horizontal gene transfer. Nat. Biotechnol. 22: 1110–1114 [CrossRef] [PubMed] [Google Scholar]
  • Nielsen KM, Bones AM, van Elsas JD (1997) Induced natural transformation of Acinetobacter calcoaceticus in soil microcosms. Appl. Environ. Microb. 63: 3972–3977 [Google Scholar]
  • Nielsen KM, van Elsas JD, Smalla K (2000) Transformation of Acinetobacter sp. BD413(pFG4Formula nptII) with transgenic plant DNA in soil microcosms and effects of kanamycin on selection of transformants. Appl. Environ. Microb. 66: 1237–1242 [CrossRef] [PubMed] [Google Scholar]
  • Nielsen KM, Berdal KG, Kruse H, Sundsfjord A, Mikalsen A, Yazdankhah S, Nes I (2005) An assessment of potential long-term health effects caused by antibiotic resistance marker genes in genetically modified organisms based on antibiotic usage and resistance patterns in Norway, VKM-Report, Norwegian Scientific Committee for Food Safety, Oslo, Norway [Google Scholar]
  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299–304 [CrossRef] [PubMed] [Google Scholar]
  • Rouzine IM, Rodrigo A, Coffin JM (2001) Transition between stochastic evolution and deterministic evolution in the presence of selection: general theory and application to virology. Microbiol. Mol. Biol. R. 65: 151–185 [CrossRef] [Google Scholar]
  • Townsend JP, Nielsen KM, Fisher D, Hartl DL (2003) Horizontal acquisition of divergent chromosomal DNA in bacteria: effects of mutator phenotypes. Genetics 164: 13–21 [Google Scholar]
  • Spratt BG, Hanage WP, Feil EJ (2001) The relative contribution of recombination and point mutation to the diversification of bacterial clones. Curr. Opin. Microbiol. 4: 602–606 [CrossRef] [PubMed] [Google Scholar]
  • Pimm SL (1991) The balance of nature? The University of Chicago Press, Chicago, pp 1–434 [Google Scholar]
  • van Herwaarden OA, van der Waal NJ (2002) Extinction time and age of an allele in a large finite population. Theor. Popul. Biol. 61: 311-318 [CrossRef] [PubMed] [Google Scholar]
  • Vulic M, Dionisio F, Taddei F, Radman M (1997) Molecular keys to speciation: DNA polymorphism and the control of gene exchange in enterobacteria. Proc. Natl. Acad. Sci. USA 94: 9763–9767 [CrossRef] [Google Scholar]
  • Wright S (1931) Evolution in Mendelian populations. Genetics 16: 97–159 [PubMed] [Google Scholar]