Free Access
Issue
Environ. Biosafety Res.
Volume 4, Number 2, April-June 2005
Page(s) 71 - 87
DOI https://doi.org/10.1051/ebr:2005013
Published online 15 November 2005
  • Alcalde E (2003) Co-existence of GM maize in Spain. Round table on research relating to co-existence of GM and non-GM crops. European Commission, http://europa.eu.int/comm/research/biosociety/pdf/rt_alcalde_abstract.pdf [Google Scholar]
  • Angevin F, Klein E, Choimet C, Meynard J, de Rouw A, Sohbi Y (2001) Modélisation des effets des systèmes de culture et du climat sur les pollinisations croisées chez le maïs. In Meynard J-M, Le Bail M, eds, Isolement des collectes et maîtrise des disséminations au champ, Rapport du groupe 3 du programme de recherche: pertinence économique et faisabilité d’une filière sans utilisation d’OGM, INRA-FNSEA, pp 21–36, http://www.fnsea.fr/dossiers/ogm/OGM020211e.pdf [Google Scholar]
  • Arritt R, Westgate M, Clark C, Fonseca A, Riese J (2003) Development of an adventitious pollen risk assessment model. In Boelt B, ed, 1st European Conference on the Co-existence of Genetically Modified Crops with Conventional and Organic Crops, Research Centre Flakkebjerg, pp 203, http://www.agrsci.dk/gmcc-03/abs_7.htm#1 [Google Scholar]
  • Aylor D (2002) Settling speed of corn (Zea mays) pollen. J. Aerosol Sci. 33: 1599–1605 [Google Scholar]
  • Aylor D (2003) Rate of dehydration of corn (Zea mays L.) pollen in the air. J. Exp. Bot. 54: 2307–2312 [CrossRef] [PubMed] [Google Scholar]
  • Aylor D (2004) Survival of maize (Zea mays) pollen exposed in the atmosphere. Agric. For. Meteorol. 123: 125–133 [CrossRef] [Google Scholar]
  • Aylor D, Schultes N, Shields E (2003) An aerobiological framework for assessing cross-pollination in maize. Agric. For. Meteorol. 119: 111–129 [CrossRef] [Google Scholar]
  • Barnabas B (1985) Effect of water loss on germination ability of maize (Zea mays L.) pollen. Ann. Bot. 55: 201–204 [Google Scholar]
  • Bassetti P, Westgate M (1994) Floral asynchrony and kernel set in maize quantified by image analysis. Agron. J. 86: 699–703 [CrossRef] [Google Scholar]
  • Bateman A (1947) Contamination of seed crops II. Wind pollination. Heredity 1: 235–246 [CrossRef] [Google Scholar]
  • Belcher K, Nolan J, Phillips P (2005) Genetically modified crops and agricultural landscapes: spatial patterns of contamination. Ecol. Econ. 53: 387–401 [CrossRef] [Google Scholar]
  • Bénétrix F (2004) Programme opérationnel d’évaluation des cultures issues des biotechnologies: bilan des programmes 2002/2003. Arvalis, Institut du végétal [Google Scholar]
  • Bénétrix F, Bloc D (2003) Maïs OGM et non-OGM: possible coexistence. Perspectives agricoles 294: 14–17 [Google Scholar]
  • Bock A-K, Lheureux K, Libeau-Dulos M, Nilsagard H, Rodriguez-Cerezo E (2002) Scenarios for co-existence of genetically modified, conventional and organic crops in European agriculture. IPTS-JRC, ftp://ftp.jrc.es/pub/EURdoc/eur20394en.pdf [Google Scholar]
  • Brookes G, Barfoot P (2003) Co-existence of GM and non GM crops: case study of maize grown in Spain. PG Economics Ltd, http://www.pgeconomics.co.uk/pdf/Coexistence_spain.pdf [Google Scholar]
  • Brookes G, Barfoot P, Melé E, Messeguer J, Bénétrix F, Bloc D, Foueillassar X, Fabié A, Poeydomenge C (2004) Genetically modified maize: pollen movement and crop co-existence. PG Economics Ltd, http://www.pgeconomics. co.uk/pdf/Maizepollennov2004final.pdf [Google Scholar]
  • Brunet Y, Foueillassar X, Audran A, Garrigou D, Dayau S, Tardieu L (2003) Evidence for long-range transport of viable maize pollen. In Boelt B, ed, 1st European Conference on the Co-existence of Genetically Modified Crops with Conventional and Organic Crops, Research Centre Flakkebjerg, pp 74–76, http://www.agrsci.dk/gmcc-03/abs_1.htm#1 [Google Scholar]
  • Buitink J, Walters-Vertucci C, Hoekstra F, Leprince O (1996) Calorimetric properties of dehydrating pollen: analysis of a desiccation-tolerant and intolerant species. Plant Physiol. 111: 235–242 [PubMed] [Google Scholar]
  • Burris J (2001) Adventitious pollen intrusion into hybrid maize seed production fields. American Seed Trade Association, http://www.amseed.com/govt_statementsDetail.asp?id=69 [Google Scholar]
  • Byrne P, Fromherz S (2003) Can GM and non-GM crops coexist? Setting a precedent in Boulder County, Colorado, USA. Food Agric. Environ. 1: 258–261 [Google Scholar]
  • Cervantes Martínez J, Louette D, Molina Galán J, Cervantes Santana T, Azpíroz Rivero H (2001) Pollen dispersal and gene flow among adjacent maize populations. Agricultura Técnica en México 27: 13–25 [Google Scholar]
  • Chilcutt C, Tabashnik B (2004) Contamination of refuges by Bacillus thuringiensis toxin genes from transgenic maize. Proc. Natl. Acad. Sci. USA 101: 7526–7529 [CrossRef] [Google Scholar]
  • Das K (1983) Vicinity distance studies of hybrid seed production in maize (Zea mays L.) at Bangalore. Mysore J. Agr. Sci. 20: 340 [Google Scholar]
  • Demont M, Tollens E (2004) First impact of biotechnology in the EU: Bt maize adoption in Spain. Ann. Appl. Biol. 145: 197–207 [CrossRef] [Google Scholar]
  • Devos Y, Reheul D, De Schrijver A, Cors F, Moens W (2004) Management of herbicide-tolerant oilseed rape in Europe: a case study on minimizing vertical gene flow. Environ. Biosafety Res. 3: 135–148 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Di-Giovanni F, Kevan P (1991) Factors affecting pollen dynamics and its importance to pollen contamination: a review. Can. J. For. Res. 21: 1155–1170 [CrossRef] [Google Scholar]
  • Di-Giovanni F, Kevan P, Nasr M (1995) The variability in settling velocities of some pollen and spores. Grana 34: 39–44 [CrossRef] [Google Scholar]
  • Du M, Kawashima S, Matsuo K, Yonemura S, Inoue S (2001) Simulation of the effect of a cornfield on wind and pollen deposition. In Ghassemi F, Whetton P, Little R, Littleboy M, eds, International Congress on Modelling and Simulation, Australian National University, pp 899–903 [Google Scholar]
  • Eastham K, Sweet J (2002) Genetically modified organisms (GMOs): the significance of gene flow through pollen transfer. Environmental Issue Report 28, EEA, http://reports.eea.eu.int/environmental_issue_report_2002_28/en/GMOs%20for%20www.pdf [Google Scholar]
  • Emberlin J, Adams-Groom B, Tidmarsh J (1999) A report on the dispersal of maize pollen. Soil Association, http://www.mindfully.org/GE/Dispersal-Maize-Pollen-UK.htm [Google Scholar]
  • Fabié A (2004) Research on coexistence in the field – French experiments for maize. COPA-COGECA colloquy on the co-existence and thresholds of adventitious presence on GMOs in conventional seeds, http://www.copa-cogeca.be/pdf/8bis.pdf [Google Scholar]
  • Farinós G, de la Poza M, Hernádez-Crespo, Ortego F, Castañera P (2004) Resistance monitoring of field population of the corn borers Sesamia nonagrioides and Ostrinia nubilalis after 5 years of Bt maize cultivation in Spain. Entomol. Exp. Appl. 110: 23–30 [CrossRef] [Google Scholar]
  • Fonseca A, Westgate M (2005) Relationship between desiccation and viability of maize pollen. Field Crops Res. 94: 114–125 [CrossRef] [Google Scholar]
  • Foueillassar X, Fabié A (2003) Waxy maize production, an experiment evaluating the co-existence of GM and conventional maize. Arvalis, Institut du végétal [Google Scholar]
  • Garcia M, Figueroa J, Gomez R, Townsend R, Schoper J (1998) Pollen control during transgenic hybrid maize development in Mexico. Crop Sci. 38: 1597–1602 [CrossRef] [Google Scholar]
  • Henry C, Morgan D, Weekes R, Daniels R, Boffey C (2003) Farm scale evaluations of GM crops: monitoring gene flow from GM crops to non-GM equivalent crops in the vicinity: part I: forage maize. DEFRA report EPG 1/5/138, http://www.defra.gov.uk/environment/gm/research/pdf/epg_ 1-5-138.pdf [Google Scholar]
  • Herrero M, Johnson R (1980) High temperature stress and pollen viability of maize. Crop Sci. 20: 796–800 [CrossRef] [Google Scholar]
  • Ingram J (2000) Report on the separation distances required to ensure cross-pollination is below specified limits in non-seed crops of sugar beet, maize and oilseed rape. MAFF Project No RG0123, http://www.agindustries.org.uk/scimac/other-doc/NIABSepDistReview.pdf [Google Scholar]
  • James C (2004) Global status of commercialized biotech/GMcrops: 2004. ISAAA Brief No 32, Ithaca, New York [Google Scholar]
  • Jarosz N, Loubet B, Durand B, McCartney A, Foueillassar X, Huber L (2003) Field measurements of airborne concentration and deposition rate of maize pollen. Agric. For. Meteorol. 119: 37–51 [CrossRef] [Google Scholar]
  • Jarosz N, Loubet B, Durand B, Foueillassar X, Huber L (2005) Variations in maize pollen emission and deposition in relation to microclimate. Environ. Sci. Technol. 39: 4377–4384 [CrossRef] [PubMed] [Google Scholar]
  • Jarosz N, Loubet B, Huber L (2004) Modelling airborne concentration and deposition rate of maize pollen. Atmos. Environ. 38: 5555–5566 [CrossRef] [Google Scholar]
  • Jemison J, Vayda M (2002) Cross pollination from genetically engineered corn: wind transport and seed source. AgBioForum 4: 87–92 [Google Scholar]
  • Jones M, Brooks J (1950) Effectiveness of distance and border rows in preventing outcrossing in corn. Okla. Agric. Exp. Stn. Bull. 38 [Google Scholar]
  • Jones M, Brooks J (1952) Effect of tree barriers on outcrossing in corn. Okla. Agric. Exp. Stn. Bull. 45 [Google Scholar]
  • Jones M, Newell L (1948) Longevity of pollen and stigma of grasses: buffalo-grass, Buchloe dactyloides (Nutt.) Engelm., and corn, Zea mays L. J. Am. Soc. Agron. 40: 195–204 [Google Scholar]
  • Kawashima S, Matsuo K, Du M, Takahashi Y, Inoue S, Yonemura S (2005) An algorithm for estimating potential deposition of corn pollen for environmental assessment. Environ. Biosafety Res. 3: 197–207 [CrossRef] [EDP Sciences] [Google Scholar]
  • Klein E, Lavigne C, Foueillassar X, Gouyon P-H, Larédo C (2003) Corn pollen dispersal: quasi-mechanistic models and field experiments. Ecol. Monogr. 73: 131–150 [CrossRef] [Google Scholar]
  • Lang A, Ludy C, Vojtech E (2004) Dispersion and deposition of Bt maize pollen in field margins. Z. Pflanzenk. Pflanzen. 111: 417–428 [Google Scholar]
  • Loos C, Seppelt R, Meier-Bethke S, Schiemann J, Richter O (2003) Spatially explicit modelling of transgenic maize pollen dispersal and cross pollination. J. Theor. Biol. 225: 241–255 [CrossRef] [PubMed] [Google Scholar]
  • Luna V, Figueroa M, Baltazar B, Gomez L, Townsend R, Schoper J (2001) Maize pollen longevity and isolation distance requirements for effective pollen control. Crop Sci. 41: 1551–1557 [CrossRef] [Google Scholar]
  • Ma B, Subedi K, Reid L (2004) Extent of cross-fertilization in maize by pollen from neighboring transgenic hybrids. Crop Sci. 44: 1273–1282 [CrossRef] [Google Scholar]
  • Meier-Bethke S, Schiemann J (2003) Effect of varying distances and intervening maize fields on outcrossing rates of transgenic maize. In Boelt B, ed, 1st European Conference on the Co-existence of Genetically Modified Crops with Conventional and Organic Crops, Research Center Flakkebjerg, pp 77–78, http://www.agrsci.dk/gmcc-03/abs_1.htm#2 [Google Scholar]
  • Melé E (2004) Spanish study shows that coexistence is possible. ABIC 3: 2, http://www.abic2004.org/download/ABIC2004_newsletter_no3.pdf [Google Scholar]
  • Messeguer J, Ballester J, Peñas G, Olivar J, Alcalde E, Melé E (2003) Evaluation of gene flow in a commercial field of maize. In Boelt B, ed, 1st European Conference on the Co-existence of Genetically Modified Crops with Conventional and Organic Crops, Research Centre Flakkebjerg, pp 220, http://www.agrsci.dk/gmcc-03/abs_7.htm#16 [Google Scholar]
  • Narayanaswamy S, Jagadish G, Ujjinaiah U (1997) Determination of isolation distance for hybrid maize seed production. Curr. Res. 26: 193–195 [Google Scholar]
  • Novotny E, Perdang J (2002) Report on a model for pollen transport by wind. Report for the Chardon LL hearing, http://www.sgr.org.uk/GenEng/pollen_transport.pdf [Google Scholar]
  • Ortega Molina J (2004) Results of the studies into the co-existence of genetically modified and conventional maize. COPA-COGECA colloquy on the co-existence and thresholds of adventitious presence on GMOs in conventional seeds, http://www.copa-cogeca.be/pdf/9.pdf [Google Scholar]
  • Paterniani E, Stort A (1974) Effective maize pollen dispersal in the field. Euphytica 23: 129–134 [CrossRef] [Google Scholar]
  • Pleasants J, Hellmich R, Dively G, Sears M, Stanley-Horn D, Mattila H, Foster J, Clark P, Jones G (2001) Corn pollen deposition on milkweeds in and near cornfields. Proc. Natl. Acad. Sci. USA 98: 11919–11924 [CrossRef] [Google Scholar]
  • Poehlman J, Sleper D (1995) Breeding field crops. Fourth edition, Iowa State University Press, Ames [Google Scholar]
  • Raynor G, Ogden E, Hayes J (1972) Dispersion and deposition of corn pollen from experimental sources. Agron. J. 64: 420–427 [CrossRef] [Google Scholar]
  • Raynor G, Ogden E, Hayes J (1974) Enhancement of particulate concentrations downwind of vegetative barriers. Agric. Meteorol. 13: 181–188 [CrossRef] [Google Scholar]
  • Salamov A (1940) About isolation in corn. Sel. I. Sem. 3 [Google Scholar]
  • Sanvido O, Widmer F, Winzeler M, Streit B, Szerencsits E, Bigler F (2005) Koexistenz verschiedener landwirtschaftlicher anbausysteme mit und ohne gentechnik. Schriftenreihe der FAL, 55, http://www.reckenholz.ch/doc/en/publ/schrift/sr55vz.html [Google Scholar]
  • Schiemann J (2003) Co-existence of genetically modified crops with conventional and organic farming. Environ. Biosafety Res. 2: 213–217 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Schoper J, Lambert R, Vasilas B (1986) Maize pollen reproductive development at low leaf water potentials in maize, viability and ear receptivity under water and high temperature. Crop Sci. 25: 762–769 [Google Scholar]
  • Schoper J, Lambert R, Vasilas B (1987) Pollen viability, pollen shedding, and combining ability for tassel heat tolerance in maize. Crop Sci. 27: 27–31 [CrossRef] [Google Scholar]
  • Sears M, Stanley-Horn D (2000) Impact of Bt corn pollen on monarch butterfly populations. In Fairbairn C, Scoles G, McHughen A, eds, Proceedings of the 6th International Symposium on the Biosafety of Genetically Modified Organisms. University Entension Press, Canada, pp 120–130, http://www.isbr.info/document/6th_international_symposium.pdf [Google Scholar]
  • Stevens W, Berberich S, Sheckell P, Wiltse C, Halsey M, Horak M, Dunn D (2004) Optimizing pollen confinement in maize grown for regulated products. Crop Sci. 44: 2146–2153 [CrossRef] [Google Scholar]
  • Taverniers I (2005) Development and implementation of strategies for GMO quantification in an evolving European context. Ph.D. thesis, University of Ghent, Ghent, Belgium [Google Scholar]
  • Tolstrup K, Andersen S, Boelt B, Buus M, Gylling M, Holm P, Kjellsson G, Pedersen S, Ostergard H, Mikkelsen S (2003) Report from the working group on the co-existence of genetically modified crop with conventional and organic crops. DIAS report Plant Production No 94, http://web.agrsci.dk/gmcc-03/Co_exist_rapport.pdf [Google Scholar]
  • Treu R, Emberlin J (2000) Pollen dispersal in the crops maize (Zea mays), oilseed rape (Brassica napus ssp. oleifera), potatoes (Solanum tuberosum), sugar beet (Beta vulgaris ssp. vulgaris) and wheat (Triticum aestivum). Soil Association, http://www.soilassociation.org/web/sa/saweb.nsf/librarytitles/GMO14012000/$file/Pollen%20Dispersal%20Report.pdf [Google Scholar]
  • Uribelarrea M, Cárcova J, Otegui M, Westgate M (2002) Pollen production, pollination dynamics, and kernel set in maize. Crop Sci. 42: 1910–1918 [CrossRef] [Google Scholar]
  • Vanryckeghem A (2000) Maïsveredeling: bevruchting van inteeltlijnen en heritabiliteit van agronomische belangrijke kenmerken. Masters thesis, University of Ghent, Ghent, Belgium [Google Scholar]
  • Weber W, Bringezu T, Broer I, Holz F, Eder J (2005) Koexistenz von gentechnisch verändertem und konventionellem Mais. Mais 1/2: 1–6 [Google Scholar]
  • Westgate M, Lizaso J, Batchelor W (2003) Quantitative relationship between pollen-shed density and grain yield in maize. Crop Sci. 43: 934–942 [CrossRef] [Google Scholar]
  • Wolt J, Shyy Y, Christensen P, Dorman K, Misra M (2004) Quantitative exposure assessment for confinement of maize biogenic systems. Environ. Biosafety Res. 3: 183–196 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Yamamura K (2004) Dispersal distance of corn pollen under fluctuating diffusion coefficient. Popul. Ecol. 46: 87–101 [Google Scholar]
  • Zangerl A, McKenna D, Wraight C, Carroll M, Ficarello P, Warner R, Berenbaum M (2001) Effects of exposure to event 176 Bacillus thuringiensis corn pollen on monarch and black swallowtail caterpillars under field conditions. Proc. Natl. Acad. Sci. USA 98: 11908–11912 [CrossRef] [PubMed] [Google Scholar]