Open Access
Issue
Environ. Biosafety Res.
Volume 9, Number 1, January-March 2010
Page(s) 13 - 23
Section Regular articles
DOI https://doi.org/10.1051/ebr/2010004
Published online 08 October 2010
  • Abud S, de Souza PIM, Vianna GR, Leonardecz E, Moreira CT, Faleiro FG, Júnior JN, Monteiro PMFO, Rech EL, Aragão FJL (2007) Gene flow from transgenic to nontransgenic soybean plants in the Cerrado region of Brazil. Genet. Mol. Res. 6: 445–452 [PubMed]
  • Carlson JB, Lersten NR (2004) Reproductive morphology. In Soybeans, Improvement, Production, and Use, Boerma HR and Specht JE, eds, American Society of Agronomy/Crop Science Society of America/Soil Science Society of America, Madison, pp 59–95
  • D’Andrea L, Felber F, Guadagnuolo R (2008) Hybridization rates between lettuce (Lactuca sativa) and its wild relative (L. serriola) under field conditions. Environ. Biosafety Res. 7: 61–71 [CrossRef] [EDP Sciences] [PubMed]
  • Della Porta G, Ederle D, Bucchini L, Prandi M, Verderio A, Pozzi C (2008) Maize pollen mediated gene flow in the Po valley (Italy): Source-recipient distance and effect of flowering time. Europ. J. Agronomy 28: 255–265 [CrossRef]
  • Ellstrand NC (2003) Current knowledge of gene flow in plants: implications for transgene flow. Phil. Trans. R. Soc. Lond. B 358: 1163–1170 [CrossRef] [PubMed]
  • Faraway JJ (2006) 3.3 Negative binomial. In Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models, Chapman & Hall/CRC, pp 63–66
  • Halsey ME, Remund KM, Davis CA, Qualls M, Eppard PJ, Berberich SA (2005) Isolation of maize from pollen-mediated gene flow by time and distance. Crop Sci. 45: 2172–2185 [CrossRef]
  • Hancock JF (2003) A framework for assessing the risk of transgenic crops. BioScience 53: 512–519 [CrossRef]
  • Haygood R, Ives AR, Andow DA (2003) Consequences of recurrent gene flow from crops to wild relatives. Proc. R. Soc. Lond. B 270: 1879–1886 [CrossRef]
  • Hooftman DAP, Oostermeijer JGB, Marquard E, den Nijs H(J)CM (2008) Modelling the consequences of crop-wild relative gene flow: a sensitivity analysis of the effects of outcrossing rates and hybrid vigour breakdown in Lactuca. J. Appl. Ecol. 45: 1094–1103 [CrossRef]
  • Hüsken A, Dietz-Pfeilstetter A (2007) Pollen-mediated intraspecific gene flow from herbicide resistant oilseed rape (Brassica napus L.). Transgenic Res. 16: 557–569 [CrossRef] [PubMed]
  • ISAAA (2009) Executive summary: Global Status of Commercialized Biotech/GM Crops: 2009. http://www.isaaa.org/
  • Karasawa K (1936) Crossing experiments with Glycine soja and G. ussuriensis. Jap. J. Bot. 8: 113–118
  • Kuroda Y, Kaga A, Tomooka N, Vaughan DA (2006) Population genetic structure of Japanese wild soybean (Glycine soja) based on microsatellite variation. Mol. Ecol. 15: 959–974 [CrossRef] [PubMed]
  • Kwon SH, Im KH, Kim JR (1972) [Studies on diversity of seed weight in the Korean soybean]. Korean J. Breed. 4: 70–74 (in Korean with English abstract)
  • McPherson MA, Good AG, Topinka AKC, Yang RC, McKenzie RH, Cathcart RJ, Christianson JA, Strobeck C, Hall LM (2009) Pollen-mediated gene flow from transgenic safflower (Carthamus tinctorius L.) intended for plant molecular farming to conventional safflower. Environ. Biosafety Res. 8: 19–32 [CrossRef] [EDP Sciences] [PubMed]
  • Messeguer J, Penas G, Ballester J, Bas M, Serra J, Salvia J, Palaudelmas M, Mele E (2006) Pollen-mediated gene flow in maize in real situations of coexistence. Plant Biotechnol. J. 4: 633–645 [CrossRef] [PubMed]
  • Mizuguti A, Yoshimura Y, Ohigashi K, Kaga A, Kuroda Y, Matsuo K (2008a) Estimation of gene flow between wild and glyphosate-tolerant GM soybeans by honeybee in containment greenhouse. Symposium handbook of 10th ISBGMO, p 115
  • Mizuguti A, Yoshimura Y, Ohigashi K, Matsuo K (2008b) Comparison of the flowering phenology among the regional populations of wild soybean in Japan. Abstracts of 5th International Weed Science Congress, p 146
  • Mizuguti A, Yoshimura Y, Matsuo K (2009) Flowering phenologies and natural hybridization of genetically modified and wild soybeans under field conditions. Weed Biol. Manag. 9: 93–96 [CrossRef]
  • Morris W, Kareiva P, Raymer P (1994) Do barren zones and pollen traps reduce gene escape from transgenic crops? Ecol. Appl. 4: 157–165 [CrossRef]
  • Nakayama Y, Yamaguchi H (2002) Natural hybridization in wild soybean (Glycine max ssp. soja) by pollen flow from cultivated soybean (Glycine max ssp. max) in a designed population. Weed Biol. Manag. 2: 25–30 [CrossRef]
  • Ohigashi K, Mizuguti A, Yoshimura Y, Nakatani K, Araki H, Tuyuzaki H, Shimada H, Horimoto S, Nishiwaki A, Miwa T, Matsuo K (2009) A flowering model to estimate the potential of hybridization between wild and cultivated soybeans. J. Weed Sci. Tech. Suppl.: 118 (in Japanese with English title)
  • Oka H (1983) Genetic control of regenerating success in semi-natural conditions observed among lines derived from a cultivated x wild soybean hybrid. J. Appl. Ecol. 20: 937–949 [CrossRef]
  • Palaudelmas M, Mele E, Penas G, Pla M, Nadal A, Serra J, Salvia J, Messeguer J (2008) Sowing and flowering delays can be an efficient strategy to improve coexistence of genetically modified and conventional maize. Crop Sci. 48: 2404–2413 [CrossRef]
  • R Development Core Team (2010) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org
  • Rognli OA, Nilsson NO, Nurminiemi M (2000) Effect of distance and pollen competition on gene flow in the wind-pollinated grass Festuca pratensis Huds. Heredity 85: 550–560 [CrossRef] [PubMed]
  • Rong J, Lu B-R, Song Z, Su J, Snow AA, Zhang X, Sun S, Chen R, Wang F (2007) Dramatic reduction of crop-to-crop gene flow within a short distance from transgenic rice fields. New Phytol. 173: 346–353 [CrossRef] [PubMed]
  • Sameshima R (2000) Modeling soybean growth and development responses to environmental factors. Bull. Natl. Agric. Res. Cent. 32: 1–119 (in Japanese with English summary)
  • Song ZP, Lu B-R, Zhu YG, Chen JK (2003) Gene flow from cultivated rice to the wild species Oryza rufipogon under experimental field conditions. New Phytol. 157: 657–665 [CrossRef]
  • Staniland BK, McVetty PBE, Friesen LF, Yarrow S, Freyssinet G, Freyssinet M (2000) Effectiveness of border areas in confining the spread of transgenic Brassica napus pollen. Can. J. Plant Sci. 80: 521–526
  • Tateishi Y, Ohashi H (2001) Subtribe V. Glycininae 62. Glycine Willd. In Flora of Japan, Vol. IIb Angiospermae Dicotyledoneae Archilamydeae (b), Iwatsuki K, Boufford DE and Ohba H, eds, Kodansha, Tokyo, pp 276–277
  • Thompson CJ, Thompson BJP, Ades PK, Cousens R, Garnier-Gere P, Landman K, Newbigin E, Burgman MA (2003) Model-based analysis of the likelihood of gene introgression from genetically modified crops into wild relatives. Ecol. Model. 162: 199–209 [CrossRef]
  • Wolf DE, Takebayashi N, Rieseberg LH (2001) Predicting the risk of extinction through hybridization. Conserv. Biol. 15: 1039–1053 [CrossRef]
  • Xu DH, Abe J, Gai Y, Shimamoto Y (2002) Diversity of chloroplast DNA SSRs in wild and cultivated soybeans: evidence for multiple origins of cultivated soybean. Theor. Appl. Genet. 105: 645–653 [CrossRef] [PubMed]
  • Yoshimura Y, Matsuo K, Yasuda K (2006) Gene flow from GM glyphosate-tolerant to conventional soybeans under field conditions in Japan. Environ. Biosafety Res. 5: 169–173 [CrossRef] [EDP Sciences] [PubMed]
  • Zar JH (2010) 24.8 Confidence limits for a population proportion. In Biostatistical Analysis Fifth Edition, Pearson Education, Inc., Upper Saddle River, New Jersey, USA, pp 543–548