Free Access
Issue
Environ. Biosafety Res.
Volume 7, Number 2, April-June 2008
Page(s) 61 - 71
DOI https://doi.org/10.1051/ebr:2008006
Published online 30 May 2008
  • Bateman AJ (1947) Contamination in Seed Crops. 3. Relation with isolation distance. Heredity 1: 303–336
  • Chen LJ, Lee DS, Song ZP, Suh HS, Lu BR (2004) Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives. Ann. Bot. 93: 67–73. [CrossRef] [PubMed]
  • Curtis IS, He C, Jordi W, Davelaar E, Power JB, De Laat AMM, Davey MR (1999) Promoter deletions are essential for transformation of lettuce by the T-cyt gene: The phenotypes of transgenic plants. Ann. Bot. 83: 559–567 [CrossRef]
  • De Vries IM (1990) Crossing experiments of lettuce cultivars and species (Lactuca sect. Lactuca, Compositae). Pl. Syst. Evol. 171: 233–248 [CrossRef]
  • Durst CE (1930) Inheritance in lettuce. Illinois Agr. Exp. Sta. Bull. 356: 237–341
  • Eenink AH (1983) Preliminary-results of research on storage and in vitro germination of lettuce pollen as an aid in lettuce breeding. Euphytica 32: 521–526 [CrossRef]
  • Ellstrand NC (2003) Dangerous liaisons? When cultivated plants mate with their wild relatives. Baltimore (MD): Johns Hopkins University Press
  • Frietema de Vries FT (1992) The systematic relationship of Lactuca sativa and Lactuca serriola, in relation to the distribution of Prickly lettuce. Acta Bot. Neerl. 43: 79
  • Frietema de Vries FT, van der Meijden R, Brandeburg WA (1994) Botanical files on lettuce: on the chance for gene flow between wild and cultivated Lettuce (L. sativa L. including L. serriola L., Compositae) and the generalised implication for risks assessment on genetically modified plants. Gorteria supplement 2: 44 p
  • Goto F, Yoshihara T, Saiki H (2000) Iron accumulation and enhanced growth in transgenic lettuce plants expressing the iron-binding protein ferritin. Theor. Appl. Genet. 100: 658–664 [CrossRef]
  • Goubara M, Takasaki T (2003) Flower visitors of lettuce under field and enclosure conditions. Appl. Entomol. Zool. 38: 571–581 [CrossRef]
  • Goubara M, Takasaki T (2004) Pollination effects of the sweat bee Lasioglossum villosulum trichopse (Hymenoptera: Halictidae) on genic male-sterile lettuce. Appl. Entomol. Zool. 39: 163–169 [CrossRef]
  • Guadagnuolo R, Clegg J, Ellstrand NC (2006) Relative fitness of transgenic vs. non-transgenic maize Formula teosinte hybrids: A field evaluation. Ecol. Appl. 16: 1967–1974 [CrossRef] [PubMed]
  • Hooftman DAP, Oostermeijer JGB, Jacobs MMJ, den Nijs HCM (2005) Demographic vital rates determine the performance advantage of crop-wild hybrids in lettuce. J. Appl. Ecol. 42: 1086–1095 [CrossRef]
  • Hooftman DAP, Jong MJD, Oostermeijer JGB, den Nijs H (2007) Modelling the long-term consequences of crop-wild relative hybridization: a case study using four generations of hybrids. J. Appl. Ecol. 44: 1035–1045
  • Ibarra Perez FJ, Ehdaie B, Waines JG (1997) Estimation of outcrossing rate in common bean. Crop Sci. 37: 60–65 [CrossRef]
  • Jones HA (1927) Pollination and life history studies of lettuce (Lactuca sativa L.). Hilgardia 2: 425–479
  • Klinger T, Elam DR, Ellstrand NC (1991) Radish as a model system for the study of engineered gene escape rates via crop-weed mating. Conserv. Biol. 5: 531–535 [CrossRef]
  • Klinger T, Arriola PE, Ellstrand NC (1992) Crop-weed hybridization in radish (Raphanus sativus): effects of distance and population size. Am. J. Bot. 79: 1431–1435 [CrossRef]
  • Koopman WJM, Zevenbergen MJ, van den Berg RG (2001) Species relationships in Lactuca s.l. (Lactuceae, Asteraceae) inferred from AFLP fingerprints. Am. J. Bot. 88: 1881–1887 [CrossRef] [PubMed]
  • Ladizinsky G (1984) Founder effect in crop-plant evolution. Econ. Bot. 39: 191–199 [CrossRef]
  • Lebeda A, Dolezalovà I, Kristkovà E, Mieslerovà B (2001) Biodiversity and ecogeography of wild Lactuca ssp. in some European countries. Genet. Resour. Crop Evol. 48: 153–164 [CrossRef]
  • Lebeda A, Dolezalova I, Ferakova V, Astley D (2004) Geographical distribution of wild Lactuca species (Asteraceae, Lactuceae). Bot. Rev. 70: 328–356 [CrossRef]
  • Lindqvist K (1960a) Cytogenetic studies in the serriola group of Lactuca. Hereditas 46: 75–151 [CrossRef]
  • Lindqvist K (1960c) On the origin of cultivated lettuce. Hereditas 46: 319–350 [CrossRef]
  • McCabe MS, Schepers F, van der Arend A, Mohapatra U, de Laat AMM, Power JB, Davey MR (1999) Increased stable inheritance of herbicide resistance in transgenic lettuce carrying a petE promoter-bar gene compared with a CaMV 35S-bar gene. Theor. Appl. Genet. 99: 587–592 [CrossRef] [PubMed]
  • Mejias JA (1994) Self-fertility and associated flower head traits in the Iberian taxa of Lactuca and related genera (Asteraceae, Lactuceae). Plant Syst. Evol. 191: 147–160 [CrossRef]
  • Nagata RT, Dusky JA, Ferl RJ, Torres AC, Cantliffe DJ (2000) Evaluation of glyphosate resistance in transgenic lettuce. J. Am. Soc. Hoartic. Sci. 125: 669–672
  • Nakamaya Y, Yamaguchi H (2002) Natural hybridization in wild soybean (Glycine max ssp. soja) by pollen flow from cultivated soybean (Glycine max ssp. max) in a designed population. Weed. Biol. Manage. 2: 25–30 [CrossRef]
  • Okubara PA, Arroyo-Garcia R, Shen KA, Mazier M, Meyers BC, Ochoa OE, Kim S, Yang CH, Michelmore RW (1997) A transgenic mutant of Lactuca sativa (lettuce) with a T-DNA tightly linked to loss of downy mildew resistance. Mol. Plant Microbe In. 10: 970–977 [CrossRef]
  • Ownbey M, Andersson IE (1949) Introgressive Hybridization. New York, London
  • Pammel LH (1918) Prickly lettuce. Proc. Ia. Acad Sci. 20: 109
  • Paul EM, Capiau K, Jacobs M, Dunwell JM (1995) A study of gene dispersal via pollen in Nicotiana tabacum using introduced genetic markers. J. Appl. Ecol. 32: 875–882 [CrossRef]
  • Pileggi M, Pereiara AAM, Silva JD, Pileggi SAV, Verma DPS (2001) An improved method for transformation of lettuce by Agrobacterium tumefaciens with a gene that confers freezing resistance. Braz. Arch. Biol. Tech. 44: 191–196
  • Prince SD, Marks MK, Carter RN (1978) Induction of flowering in wild lettuce (Lactuca serriola L.). New Phytologist 81: 265–277 [CrossRef]
  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43: 223–225 [CrossRef]
  • Schmitt J (1983) Density-dependent pollinator foraging, flowering phenology, and temporal pollen dispersal patterns in linanthus-bicolor. Evolution 37: 1247–1257 [CrossRef] [PubMed]
  • Snow AA, Palma PM (1997) Commercialization of transgenic plants: Potential ecological risks. Bioscience 47: 86–96 [CrossRef]
  • Snow AA, Spira TP (1996) Pollen-tube competition and male fitness in Hibiscus moscheutos. Evolution 50: 1866–1870 [CrossRef] [PubMed]
  • Song ZP, Lu BR, Zhu YG, Chen JK (2003) Gene flow from cultivated rice to the wild species Oryza rufipogon under experimental field conditions. New Phytol. 157: 657–665 [CrossRef]
  • Thompson RC, Whitaker TW, Bohn GW (1958) Natural cross-pollination in lettuce. Proc. Am. Soc. Hort. Sci. 36: 403–409
  • Van Deynze AE, Sundstrom FJ, Bradford KJ (2005) Pollen-mediated gene flow in California cotton depends on pollinator activity. Crop Sci. 45: 1565–1570 [CrossRef]
  • Wang TY, Chen HB, Reboud X, Darmency H (1997) Pollen-mediated gene flow in an autogamous crop: Foxtail millet (Setaria italica). Plant Breed. 116: 579–583 [CrossRef]
  • Watts LE (1958) Natural cross-pollination in lettuce. Nature 181: 1084 [CrossRef]
  • Weaver SE, Downs MP (2003) The biology of Canadian weeds. 122. Lactuca serriola L. Can. J. Plant Sci. 83: 619–628
  • Whitaker TW (1939) Cytogenetic observations in Lactuca. J. Agri. Res. 58: 297–306
  • Wolfenbarger LL, Phifer PR (2000) Biotechnology and ecology - The ecological risks and benefits of genetically engineered plants. Science 290: 2088–2093 [CrossRef] [PubMed]
  • Zhang NY, Linscombe S, Oard J (2003) Out-crossing frequency and genetic analysis of hybrids between transgenic glufosinate herbicide-resistant rice and the weed, red rice. Euphytica 130: 35–45 [CrossRef]