Free Access
Issue
Environ. Biosafety Res.
Volume 6, Number 1-2, January-June 2007
Thematic Issue on Horizontal Gene Transfer
Page(s) 91 - 99
DOI https://doi.org/10.1051/ebr:2007035
Published online 26 October 2007
  • Adesina, M, Lembke A, Costa R, Speksnijder A, Smalla K (2007) Screening of bacterial isolates from various European soils for in vitro antagonistic activity towards Rhizoctonia solani and Fusarium oxysporum: site-dependent composition and diversity revealed. Soil Biol. Biochem. 39: 2818–2828 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Andersen JB, Sternberg C, Poulsen LK, Bjorn SP, Givskov M, Molin S (1998) New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl. Environ. Microbiol. 64: 2240–2246 [Google Scholar]
  • Berg G, Roskot N, Steidle A, Eberl L, Zock A, Smalla K (2002) Plant dependent genotypic and phenotypic diversity of antagonistic Rhizobacteria isolated from different Verticillium host plants. Appl. Environ. Microbiol. 68: 3328–3338 [Google Scholar]
  • Berka RM, Hahn J, Albano M, Draskovic I, Persuh M, Cui X, Sloma A, Widner W, Dubnau D (2002) Microarray analysis of the Bacillus subtilis K-state: genome-wide expression changes dependent on ComK. Mol. Microbiol. 43: 1331–1345 [CrossRef] [PubMed] [Google Scholar]
  • Bertolla F, Pepin R, Passelègue-Robe E, Paget E, Simkin A, Nesme X, Simonet P (2000) Plant genome complexity may be a factor limiting in situ the transfer of transgenic plant genes to the phytopathogen Ralstonia solanacearum. Appl. Environ. Microbiol. 66: 4161–4167 [CrossRef] [PubMed] [Google Scholar]
  • Cérémonie H, Buret F, Simonet P, Vogel TM (2004) Isolation of lightning-competent soil bacteria. Appl. Environ. Microbiol. 70: 6342–6346 [CrossRef] [PubMed] [Google Scholar]
  • Cérémonie H, Buret F, Simonet P, Vogel TM (2006) Natural electrotransformation of lightning-competent Pseudomonas sp. strain N3 in artificial soil microcosms. Appl. Environ. Microbiol. 72: 2385–2389 [CrossRef] [PubMed] [Google Scholar]
  • de Vries J, Wackernagel W (1998) Detection of nptII (kanamycin resistance) genes in genomes of transgenic plants by marker-rescue transformation. Mol. Gen. Genet. 257: 606–613 [Google Scholar]
  • de Vries J, Wackernagel W (2002) Integration of foreign DNA during natural transformation of Acinetobacter sp. by homology-facilitated illegitimate recombination. PNAS 99: 2094–2099 [CrossRef] [Google Scholar]
  • de Vries J, Wackernagel W (2004) Microbial horizontal gene transfer and the DNA release from transgenic crop plants. Plant Soil 266: 91–104 [CrossRef] [Google Scholar]
  • de Vries J, Meier P, Wackernagel, W (2001) The natural transformation of the soil bacteria Pseudomonas stutzeri and Acinetobacter sp. by transgenic plant DNA strictly depends on homologous sequences in the recipient cells. FEMS Microbiol. Lett. 195: 211–215 [Google Scholar]
  • de Vries J, Heine M, Harms K, Wackernagel W (2003) Spread of recombinant DNA by roots and pollen of transgenic potato plants, identified by highly specific biomonitoring using natural transformation of an Acinetobacter sp. Appl. Environ. Microbiol. 69: 4455–4462 [CrossRef] [PubMed] [Google Scholar]
  • de Vries J, Herzfeld T, Wackernagel W (2004) Transfer of plastid DNA from tobacco to the soil bacterium Acinetobacter sp. by natural transformation. Mol. Microbiol. 53: 323–334 [Google Scholar]
  • Demanèche S, Kay E, Gourbière F, Simonet P (2001) Natural transformation of Pseudomonas fluorescens and Agrobacterium tumefacien in soil. Appl. Environ. Microbiol. 67: 2617–2621 [CrossRef] [PubMed] [Google Scholar]
  • Dubnau D (1999) DNA uptake in bacteria. Annu. Rev. Microbiol. 53: 17–44 [Google Scholar]
  • Gebhard F, Smalla K (1998) Transformation of Acinetobacter sp. strain BD 413 by transgenic sugar beet DNA. Appl. Environ. Microbiol. 64: 1550–1554 [PubMed] [Google Scholar]
  • Gebhard F, Smalla K (1999) Monitoring field releases of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene transfer. FEMS Microbiol. Ecol. 28: 261–272 [Google Scholar]
  • Götz A, Pukall R, Tietze E, Prager R, Tschäpe H, van Elsas JD, Smalla K (1996) Detection and characterisation of broad-host-range plasmids in environmental bacteria by PCR. Appl. Environ. Microbiol. 62: 2621–2628 [Google Scholar]
  • Haagensen JAJ, Hansen SK, Johansen T, Molin S (2002) In situ detection of horizontal transfer of mobile genetic elements. FEMS Microbiol Ecol 42: 261–268 [CrossRef] [PubMed] [Google Scholar]
  • Kay E, Vogel TM, Bertolla F, Nalin R, Simonet P (2002) In situ transfer of antibiotic resistance genes from transgenic (transplastomic) tobacco plants to bacteria. Appl. Environ. Microbiol. 68: 3345–3351 [CrossRef] [PubMed] [Google Scholar]
  • Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev. 58: 563–602 [PubMed] [Google Scholar]
  • Maamar H, Dubnau D (2005) Bistability in the Bacillus subtilis K-state (competence) system requires a positive feedback loop. Mol. Microbiol. 56: 615–624 [CrossRef] [PubMed] [Google Scholar]
  • Meier P, Wackernagel W (2003) Mechanisms of homology-facilitated illegitimate recombination for foreign DNA acquisition in transformable Pseudomonas stutzeri. Mol. Microbiol. 48: 1107–1118 [Google Scholar]
  • Milling A, Smalla K, Maidl FX, Schloter M, Munch JC (2004) Effects of transgenic potatoes with an altered starch composition on the diversity of soil and rhizosphere bacteria and fungi. Plant Soil 266: 23–39 [CrossRef] [Google Scholar]
  • Nielsen KM, van Weerelt MD, Berg TN, Bones AM, Hagler AN, van Elsas JD (1997a) Natural transformation and availability of transforming DNA to Acinetobacter calcoaceticus in soil microcosms. Appl. Environ. Microbiol. 63: 1945–1952 [Google Scholar]
  • Nielsen KM, Bones AM, van Elsas JD (1997b) Induced natural transformation of Acinetobacter calcoaceticus in soil microcosms. Appl. Environ. Microbiol. 63: 3972–3977 [PubMed] [Google Scholar]
  • Nielsen KM, Bones AM, Smalla K, van Elsas JD (1998) Horizontal gene transfer from transgenic plants to terrestrial bacteria - a rare event? FEMS Microbiol. Rev. 22: 79–103 [PubMed] [Google Scholar]
  • Nielsen KM, Smalla K, van Elsas JD (2000a) Natural transformation of Acinetobacter sp. strain BD413 with cell lysates of Acinetobacter sp., Pseudomonas fluorescens and Burkholderia cepacia in soil microcosms. Appl. Environ. Microbiol. 66: 206–212 [Google Scholar]
  • Nielsen KM, van Elsas JD, Smalla K (2000b) Transformation of Acinetobacter sp. strain BD413 (pFG4Formula nptII) with transgenic plant DNA in soil microcosms and effects of kanamycin on selection of transformants. Appl. Environ. Microbiol. 66: 1237–1242 [CrossRef] [PubMed] [Google Scholar]
  • Palmen R, Vosman B, Buijsman P, Breek CKD, Hellingwerf KJ (1993) Physiological characterization of natural transformation in Acinetobacter calcoaceticus. J. Gen. Microbiol. 139: 295–305 [Google Scholar]
  • Rademaker JLW, de Bruijn FJ (1997) Characterization and classification of microbes by REP-PCR genomic fingerprinting and computer-assisted pattern analysis. In Gaetano-Anolles G, Gresshoff PM, eds, DNA markers: Protocols, Applications and Overviews, Wiley & Sons, Inc., New York, pp 151–171 [Google Scholar]
  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY [Google Scholar]
  • Sikorski J, Teschner N, Wackernagel W (2002) Highly different levels of natural transformation are associated with genomic subgroups within a local population of Pseudomonas stutzeri from soil. Appl. Environ. Microbiol. 68: 865–873 [CrossRef] [PubMed] [Google Scholar]
  • van den Eede G, Aarts H, Buhk H-J, Corthier G, Flint HJ, Hammes W, Jacobsen B, Midtvedt T, Van der Vossen J, von Wright A, Wackernagel W, Wilcks A (2004) The relevance of gene transfer to the safety of food and feed derived from genetically modified (GM) plants. Food Chem. Toxicol. 42: 1127–1156 [CrossRef] [PubMed] [Google Scholar]
  • Vaneechoutte M, Young DM, Ornston LN, de Baere T, Nemec A, Van der Reijden T, Carr E, Tjernberg I, Dijkshoorn L (2006) Naturally transformable Acinetobacter sp. strain ADP1 belongs to the newly described species Acinetobacter baylyi. Appl. Environ. Microbiol. 72: 932–936 [CrossRef] [PubMed] [Google Scholar]