Free Access
Environ. Biosafety Res.
Volume 6, Number 1-2, January-June 2007
Thematic Issue on Horizontal Gene Transfer
Page(s) 101 - 112
Published online 20 September 2007
  • Becker D, Kemper E, Schell J, Masterson R (1992) New plant binary vectors with selectable markers located proximal to the left T-DNA border. Plant. Mol. Biol. 20: 1195–1197 [Google Scholar]
  • Ceccherini MT, Pote J, Kay E, Van VT, Marechal J, Pietramellara G, Nannipieri P, Vogel TM, Simonet P (2003) Degradation and transformability of DNA from transgenic leaves. Appl. Environ. Microbiol. 69: 673–678 [Google Scholar]
  • Clough SJ, Bent AJ (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16: 735–743 [Google Scholar]
  • Day MJ (2002) Transformation in aquatic environments. In Syvanen M, Kado CI, eds, Horizontal gene transfer, 2nd edn, Academic Press, London, pp 63–80 [Google Scholar]
  • De Vries J, Wackernagel WM (1998) Detection of nptII (kanamycin resistance) genes in genomes of transgenic plants by marker-rescue transformation. Mol. Gen. Genet. 257: 606–613 [Google Scholar]
  • De Vries J, Meier P, Wackernagel WM (2001) The natural transformation of the soil bacteria Pseudomonas stutzeri and Acinetobacter sp. by transgenic plant DNA strictly depends on homologous sequences in the recipient cells. FEMS Microbiol. Lett. 195: 211–215 [PubMed] [Google Scholar]
  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19: 11–15 [Google Scholar]
  • Fry JC, ed (1993) Biological Data Analysis: A Practical Approach. IRL Press, Oxford, pp 418 [Google Scholar]
  • Gebhard F, Smalla K (1998) Transformation of Acinetobacter sp. strain BD413 by transgenic sugar beet DNA. Appl. Environ. Microbiol. 64: 1550–1554 [Google Scholar]
  • Gebhard F, Smalla K (1999) Monitoring field releases of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene transfer. FEMS Microbiol. Ecol. 28: 261–272 [CrossRef] [Google Scholar]
  • Heinemann JA, Traavik T (2004) Problems in monitoring horizontal gene transfer in field trials of transgenic plants. Nat. Biotechnol. 22: 1105–1109 [Google Scholar]
  • Hellens R, Mullineaux P, Klee H (2000) A guide to Agrobacterium binary Ti vectors. Trends Plant. Sci. 5: 446–451 [Google Scholar]
  • James C (2005) Global Status of Commercialized Biotech/GM Crops: 2004 ISAAA briefs no. 32. [Google Scholar]
  • Kay E, Vogel TM, Bertolla F, Nalin R, Simonet P (2002) In situ transfer of antibiotic resistance genes from transgenic (transplastomic) tobacco plants to bacteria. Appl. Environ. Microbiol. 68: 3345–3351 [Google Scholar]
  • Lilley AK, Fry JC, Day MJ, Bailey MJ (1994) In-situ transfer of an exogenously isolated plasmid between Pseudomonas spp. in Sugar-Beet rhizosphere. Microbiology 140: 27–33 [Google Scholar]
  • Lilley AK, Bailey MJ, Day MJ, Fry JC (1996) Diversity of mercury resistance plasmids obtained by exogenous isolation from the bacteria of sugar beet in three successive years. FEMS Microbiol. Ecol. 20: 211–227 [Google Scholar]
  • Lorenz MG, Wackernagel WM (1994) Bacterial gene-transfer by natural genetic-transformation in the environment. Microbiol. Rev. 58: 563–602 [Google Scholar]
  • Murashige T, Skoog F (1962) Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497 [Google Scholar]
  • Nielsen KM, van Elsas JD (2001) Stimulatory effects of compounds present in the rhizosphere on natural transformation of Acinetobacter sp. BD413 in soil. Soil. Biol. Biochem. 33: 345–357 [Google Scholar]
  • Nielsen KM, Bones AM, van Elsas JD (1997) Induced natural transformation of Acinetobacter calcoaceticus in soil microcosms. Appl. Environ. Microbiol. 63: 3972–3977. [Google Scholar]
  • Nielsen KM, van Elsas JD, Smalla K (2000) Transformation of Acinetobacter sp. strain BD413 (pFG4Formula nptII) with transgenic plant DNA in soil microcosms and effects of kanamycin on selection of transformants. Appl. Environ. Microbiol. 66: 1237–1242 [Google Scholar]
  • Paget E, Simonet P (1994) On the track of natural transformation in soil. FEMS Microbiol. Ecol. 15: 109–117 [Google Scholar]
  • Paget E, Lebrun M, Freyssinet G, Simonet P (1998) The fate of recombinant plant DNA in soil. Eur. J. Soil. Biol. 34: 81–88 [Google Scholar]
  • Rochelle PA, Day MJ, Fry JC (1988) Occurrence, transfer and mobilisation in epilithic strains of Acinetobacter of mercury-resistance plasmids capable of transformation. J. Gen. Microbiol. 134: 2933–2941 [Google Scholar]
  • Simpson DJ, Dawson LF, Fry JC, Rogers HJ, Day MJ (2007) Influence of flanking homology and insert size on the transformation frequency of Acinetobacter baylyi BD413 by whole genes. Environ. Biosafety Res. 6, DOI: 10.1051/ebr:2007027 [EDP Sciences] [Google Scholar]
  • Stokstad E (2004) Monsanto pulls the plug on genetically modified wheat. Science 304: 1088–1089 [Google Scholar]
  • Tepfer D, Garcia-Gonzales R, Mansouri H, Seruga M, Message B, Leach F, Curkovic Perica M (2003) Homology-dependent DNA transfer from plants to a soil bacterium under laboratory conditions: implications in evolution and horizontal gene transfer. Transgenic Res. 13: 425–437 [Google Scholar]
  • Vaneechoutte M, Young DM, Ornston LN, De Baere T, Nemec A, Van Der Reijden T (2006) Naturally transformable Acinetobacter sp. strain ADP1 belongs to the newly described species Acinetobacter baylyi. Appl. Environ. Microbiol. 72: 932–936 [Google Scholar]
  • Watt VM, Ingles JC, Urdea MS, Rutter WJ (1985) Homology requirements for recombination in Escherichia coli. Proc. Natl. Acad. Sci. USA 82: 4768–4772 [Google Scholar]
  • Williams HG, Day MJ, Fry JC, Stewart GJ (1996) Natural transformation in river epilithon. Appl. Environ. Microbiol. 62: 2994–2998 [Google Scholar]