Free Access
Issue
Environ. Biosafety Res.
Volume 6, Number 1-2, January-June 2007
Thematic Issue on Horizontal Gene Transfer
Page(s) 15 - 35
DOI https://doi.org/10.1051/ebr:2007037
Published online 26 October 2007
  • Ahrenholtz I, Lorenz MG, Wackernagel W (1994) The extracellular nuclease of Serratia marcescens: studies on the activity in vitro and effect on transforming DNA in a groundwater aquifer microcosm. Arch. Microbiol. 161: 176–183 [PubMed] [Google Scholar]
  • Altieri MA, Gurr GM, Wratten SD (2004) Genetic engineering and ecological engineering: A clash of paradigms or scope for synergy? In Gurr GM, Wratten SD, Altieri MA, eds, Ecological engineering for pest management: Advances in habitat manipulation for arthropods, Collingwood, Australia: CSIRO Publishing, pp 13–31 [Google Scholar]
  • Ando T, Xu Q, Torres M, Kusugami K, Israel DA, Blaser MJ (2000) Restriction-modification system differences in Helicobacter pylori are a barrier to interstrain plasmid transfer. Mol. Microbiol. 37: 1052–65 [CrossRef] [PubMed] [Google Scholar]
  • Angle JS (1994) Release of Transgenic Plants - Biodiversity and Population-Level Considerations. Mol. Ecol. 3: 45–50 [CrossRef] [Google Scholar]
  • Aragao FJL, Sarokin L, Vianna GR, Rech EL (2000) Selection of transgenic meristematic cells utilizing a herbicidal molecule results in the recovery of fertile transgenic soybean [Glycine max (L.) Merril] plants at a high frequency. Theoret. Appl. Genet. 101: 1–6 [CrossRef] [Google Scholar]
  • Avery OT, MacLeod CM, McCarthy M (1944) Studies on the chemical nature of the substance inducing transformation of pneumococcal types. I. Induction of transformation by a deoxyribonucleic acid fraction isolated from Pneumococcus type III. J. Exp. Med. 79: 137 [Google Scholar]
  • Barry G, Kishore G, Padgette S, Talor M, Kolacz K, Weldon M, Re D, Eichholtz D, Fincher K, Hallas L (1992) Inhibitors of amino acid biosynthesis: strategies for imparting glyphosate tolerance to plants. In Singh BK, Flores HE, Shannon JC, eds, Biosynthesis and Molecular Regulation of Amino Acids in Plants, American Society of Plant Physiology, pp 139–145 [Google Scholar]
  • Baur B, Hanselmann K, Schlimme W, Jenni B (1996) Genetic transformation in freshwater: Escherichia coli is able to develop natural competence. Appl. Environ. Microbiol. 62: 3673–3678 [PubMed] [Google Scholar]
  • Becker R, Ulrich A, Hedtke C, Hornermeier B (2001) Einfluss des Anbaus von transgenem herbizidresistentem Raps auf das Agrarökosystem. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 44: 159–167 [CrossRef] [Google Scholar]
  • Belzile FJ (2002) Transgenic, transplastomic and other genetically modified plants: a Canadian perspective. Biochimie 84: 1111–1118 [CrossRef] [PubMed] [Google Scholar]
  • Berndt C, Meier P, Wackernagel W (2003) DNA restriction is a barrier to natural transformation in Pseudomonas stutzeri JM300. Microbiol. 149: 895–901 [CrossRef] [Google Scholar]
  • Bertolla F, Van Gijsegem F, Nesme X, Simonet P (1997) Conditions for natural transformation of Ralstonia solanacearum. Appl. Environ. Microbiol. 63: 4965–4968 [PubMed] [Google Scholar]
  • Bertolla F, Frostegard A, Brito B, Nesme X, Simonet P (1999) During infection of its host, the plant pathogen Ralstonia solanacearum naturally develops a state of competence and exchanges genetic material. Mol. Plant Microbe Interact. 12: 467–472 [CrossRef] [Google Scholar]
  • Bertolla F, Pepin R, Passelegue-Robe E, Paget E, Simkin A, Nesme X, Simonet P (2000) Plant genome complexity may be a factor limiting in situ the transfer of transgenic plant genes to the phytopathogen Ralstonia solanacearum. Appl. Environ. Microbiol. 66: 4161–4167 [CrossRef] [PubMed] [Google Scholar]
  • Bickle TA, Kruger DH (1993) Biology of DNA restriction. Microbiol. Rev. 57: 434–450 [PubMed] [Google Scholar]
  • Björklöf K, Suoniemi A, Haahtela K, Romantschuk M (1995) High frequency of conjugation versus plasmid segregation of RP1 in epiphytic Pseudomonas syringae populations. Microbiol. 141: 2719–2727 [CrossRef] [Google Scholar]
  • Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A (2001) The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 11: 731–753 [CrossRef] [PubMed] [Google Scholar]
  • Boyle JR, Lundkvist H, Smith CT (2001) Ecological considerations for potentially sustainable plantation forests. In Strauss SH, Bradshaw HD, eds, Proc. of the 1st Int. Symp. on Ecological and Societal Aspects of Transgenic Plantations, Stevenson, WA, 22–24 July 2001, College of Forestry, Oregon State University, Corvallis, pp 151–157 [Google Scholar]
  • Bron S, Luxen E, Venema G (1980) Restriction and modification in Bacillus subtilis. Mol. Gen. Genet. 179: 103–110 [Google Scholar]
  • Carrer H, Hockenberry TN, Svab Z, Maliga P (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol. Gen. Genet. 241: 49–56 [CrossRef] [PubMed] [Google Scholar]
  • Castaldini M, Turrini A, Sbrana C, Benedetti A, Marchionni M, Mocali S, Fabiani A, Landi S, Santomassimo F, Pietrangeli B, Nuti MP, Miclaus N, Giovannetti M (2005) Impact of Bt corn on rhizospheric and soil eubacterial communities and on beneficial mycorrhizal symbiosis in experimental microcosms. Appl. Environ. Microbiol. 71: 6719–6729 [CrossRef] [PubMed] [Google Scholar]
  • Ceccherini MT, Castialdini M, Piovanelli C, Hastings RC, McCarthy AJ, Bazzicalupo M, Miclaus N (1998) Effects of swine manure on autotrophic ammonia-oxidizing bacteria in soil microcosms. Appl. Soil. Ecol. 7: 149–157 [CrossRef] [Google Scholar]
  • Ceccherini M, Pote J, Kay E, Van VT, Marechal J, Pietramellara G, Nannipieri P, Vogel TM, Simonet P (2003) Degradation and transformability of DNA from transgenic leaves. Appl. Environ. Microbiol. 69: 673–678 [CrossRef] [PubMed] [Google Scholar]
  • Cérémonie H, Buret F, Simonet P, Vogel TM (2004) Isolation of lightning-competent soil bacteria. Appl. Environ. Microbiol. 70: 6342–6346 [CrossRef] [PubMed] [Google Scholar]
  • Cérémonie H, Buret F, Simonet P, Vogel TM (2006) Natural electro-transformation of lightning competent Pseudomonas strain in artificial soil microcosms. Appl. Environ. Microbiol. 72: 2385–2389 [Google Scholar]
  • Claverys J-P, Martin B (2003) Bacterial competence genes: signatures of active transformation, or only remnants? Trends Microbiol. 11: 161–165 [CrossRef] [PubMed] [Google Scholar]
  • Comai L, Facciotti D, Hiatt WR, Thompson G, Rose RE, Stalker DM (1985) Expression in plants of a mutant aroA gene from Salmonella typhimurium confers tolerance to glyphosate. Nature 317: 741–744 [CrossRef] [Google Scholar]
  • Comai L, Larson-Kelly N, Kiser J, Mau CJ, Pokalsky AR, Shewmaker CK, McBride K, Jones A, Stalker DM (1988) Chloroplast transport of a ribulose bisphosphate carboxylase small subunit-5-enolpyruvyl 3-phosphoshikimate synthase chimeric protein requires part of the mature small subunit in addition to the transit peptide. J. Biol. Chem. 263: 15104–15109 [Google Scholar]
  • Crecchio C, Stotzky G (1998) Binding of DNA on humic acids: effect on transformation of Bacillus subtilis and resistance to DNase. Soil Biol. Biochem. 30: 1061–1067 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Daniell H, Muthukumar B, Lee SB (2001a) Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Curr. Genet. 39: 109–116 [CrossRef] [PubMed] [Google Scholar]
  • Daniell H, Wiebe PO, Millan AF (2001b) Antibiotic-free chloroplast genetic engineering - an environmentally friendly approach. Trends Plant Sci. 6: 237–239 [CrossRef] [PubMed] [Google Scholar]
  • Daniell H, Khan MS, Allison L (2002) Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant. Sci. 7: 84–91 [CrossRef] [PubMed] [Google Scholar]
  • Davies J (1994) Inactivation of antibiotics and the dissemination of resistance genes. Science 264: 375–382 [CrossRef] [PubMed] [Google Scholar]
  • De Leij F, Sutton E, Whipps J, Fenlon J, Lynch J (1995) Impact of field release of genetically modified Pseudomonas fluorescens on indigenous microbial populations of wheat. Appl. Environ. Microbiol. 61: 3443–3453 [PubMed] [Google Scholar]
  • de Lipthay JR, Barkay T, Sorensen SJ (2001) Enhanced degradation of phenoxyacetic acid in soil by horizontal transfer of the tfdA gene encoding a 2,4-dichlorophenoxyacetic acid dioxygenase. FEMS Microbiol. Ecol. 35: 75–84 [PubMed] [Google Scholar]
  • de Vries J, Wackernagel W (1998) Detection of nptII (kanamycin resistance) genes in genomes of transgenic plants by marker-rescue transformation. Mol. Gen. Genet. 257: 606–613 [CrossRef] [PubMed] [Google Scholar]
  • de Vries J, Wackernagel W (2002) Integration of foreign DNA during natural transformation of Acinetobacter sp. by homology-facilitated illegitimate recombination. Proc Natl. Acad. Sci. USA 99: 2094–2099 [CrossRef] [Google Scholar]
  • de Vries J, Wackernagel W (2004) Microbial horizontal gene transfer and the DNA release from transgenic crop plants. Plant Soil 266: 91–104 [Google Scholar]
  • de Vries J, Meier P, Wackernagel W (2001) The natural transformation of the soil bacteria Pseudomonas stutzeri and Acinetobacter sp. by transgenic plant DNA strictly depends on homologous sequences in the recipient cells. FEMS Microbiol. Lett. 195: 211–215 [PubMed] [Google Scholar]
  • DeBlock M, Herrera-Estrella L, Van Montagu M, Schell J, Zambryski P (1984) Expression of foreign genes in regenerated plants and in their progeny. EMBO J. 3: 1681–1689 [PubMed] [Google Scholar]
  • DeBlock M, Schell J, Van Montagu M (1985) Chloroplast transformation by Agrobacterium tumefaciens. EMBO J. 4: 1367–1372 [PubMed] [Google Scholar]
  • DeBlock M, De Brower D, Tenning P (1989) Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiol. 91: 694–701 [CrossRef] [PubMed] [Google Scholar]
  • Della Cioppa G, Christopher Bauer S, Taylor ML, Rochester DE, Klein BK, Shah DM, Fraley RT, Kishore GM (1987) Targeting a herbicide-resistant enzyme from Escherichia coli to chloroplasts of higher plants. Nat. Biotech. 5: 579–584 [CrossRef] [Google Scholar]
  • Demanèche S, Bertolla F, Buret F, Nalin R, Sailland A, Auriol P, Vogel TM, Simonet P (2001a) Laboratory-scale evidence for lightning-mediated gene transfer in soil. Appl. Environ. Microbiol. 67: 3440–3444 [CrossRef] [PubMed] [Google Scholar]
  • Demanèche S, Jocteur-Monrozier L, Quiquampoix H, Simonet P (2001b) Evaluation of biological and physical protection against nuclease degradation of clay-bound plasmid DNA. Appl. Environ. Microbiol. 67: 293–299 [CrossRef] [PubMed] [Google Scholar]
  • Demanèche S, Kay E, Gourbière F, Simonet P (2001c) Natural transformation of Pseudomonas fluorescens and Agrobacterium tumefaciens in soil. Appl. Environ. Microbiol. 67: 2617–2621 [CrossRef] [PubMed] [Google Scholar]
  • Di Giovanni GD, Watrud LS, Seidler RJ, Widmer F (1999) Comparison of parental and transgenic alfalfa rhizosphere bacterial communities using Biolog GN metabolic fingerprinting and enterobacterial repetitive intergenic consensus sequence-PCR (ERIC-PCR). Microb. Ecol. 37: 129–139 [CrossRef] [PubMed] [Google Scholar]
  • Donegan KK, Seidler RJ, Doyle JD, Porteous LA, Digiovanni G, Widmer F, Watrud LS (1999) A field study with genetically engineered alfalfa inoculated with recombinant Sinorhizobium meliloti: effects on the soil ecosystem. J. Appl. Ecol. 36: 920–936 [Google Scholar]
  • Dubnau D (1999) DNA uptake in bacteria. Annu. Rev. Microbiol. 53: 217–244 [Google Scholar]
  • Dunfield KE, Germida JJ (2001) Diversity of bacterial communities in the rhizosphere and root interior of field-grown genetically modified Brassica napus. FEMS Microbiol. Ecol. 38: 1–9 [CrossRef] [Google Scholar]
  • Dunfield KE, Germida JJ (2003) Seasonal changes in the rhizosphere microbial communities associated with field-grown genetically modified canola (Brassica napus). Appl. Environ. Microbiol. 69: 7310–7318 [CrossRef] [PubMed] [Google Scholar]
  • Dunfield KE, Germida JJ (2004) Impact of genetically modified crops on soil- and plant-associated microbial communities. J. Environ. Qual. 33: 806–815 [CrossRef] [PubMed] [Google Scholar]
  • Dunwell JM (1999) Transgenic Crops: The next generation, or an example of 2020 vision. Annals Botan. 84: 269–277 [CrossRef] [Google Scholar]
  • Dykhuizen DE (1998) Santa Rosalia revisited: Why are there so many species of bacteria? Antonie van Leeuwenhoek 73: 25–33 [Google Scholar]
  • Eichholtz DA, Rogers SG, Horsch RB, Klee HJ, Hayford M, Hoffmann NL, Braford SB, Fink C, Flick J, O'Connell KM, Froley RT (1987) Expression of mouse dihydrofolate reductase gene confers methotrexate resistance in transgenic petunia plants. Somatic Cell. Mol. Genet. 13: 67–76 [Google Scholar]
  • Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffmann NL, Woo SC (1983) Expression of bacterial genes in plant cells. Proc. Natl. Acad. Sci. USA 80: 4803–4807 [CrossRef] [Google Scholar]
  • Franchi M, Bramanti E, Morassi Bonzi L, Luigi Orioli P, Vettori C, Gallori E (1999) Clay-nucleic acid complexes: characteristics and implications for the preservation of genetic material in primeval habitats. Orig. Life Evol. Biosph. 29: 297–315 [CrossRef] [PubMed] [Google Scholar]
  • Freyssinet G, Pelissier B, Freyssinet M, Delon R (1996) Crops resistant to oxynils: from the laboratory to the market. Field Crops Res. 45: 125–133 [Google Scholar]
  • Frostegard A, Courtois S, Ramisse V, Clerc S, Bernillon D, Le Gall F, Jeannin P, Nesme X, Simonet P (1999) Quantification of bias related to the extraction of DNA directly from soils. Appl. Environ. Microbiol. 65: 5409–5420 [PubMed] [Google Scholar]
  • Gallori E, Bazzicalupo M, Dal Canto L, Fani R, Nannipieri P, Vettori C, Stotzky G (1994) Transformation of Bacillus subtilis by DNA bound on clay in non-sterile soil. FEMS Microbiol. Ecol. 15: 119–126 [CrossRef] [Google Scholar]
  • Gebhard F, Smalla K (1998) Transformation of Acinetobacter sp. strain BD413 by transgenic sugar beet DNA. Appl. Environ. Microbiol. 64: 1550–1554 [PubMed] [Google Scholar]
  • Gebhard F, Smalla K (1999) Monitoring field releases of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene transfer. FEMS Microbiol. Ecol. 28: 261–272 [CrossRef] [Google Scholar]
  • Goddijn OJ, van der Duyn Schouten PM, Schilperoort RA, Hoge JH (1993) A chimaeric tryptophan decarboxylase gene as a novel selectable marker in plant cells. Plant. Mol. Biol. 22: 907–912 [CrossRef] [PubMed] [Google Scholar]
  • Goldstein DA, Tinland B, Gilbertson LA, Staub JM, Bannon GA, Goodman RE, McCoy RL, Silvanovich A (2005) Human safety and genetically modified plants: a review of antibiotic resistance markers and future transformation selection technologies. J. Appl. Microbiol. 99: 7–23 [CrossRef] [PubMed] [Google Scholar]
  • Gossele V, Aarssen R, Cornelissen M (1994) A 6' gentamicin acetyltransferase gene allows effective selection of tobacco transformants using kanamycin as a substrate. Plant Mol. Biol. 26: 2009–2012 [Google Scholar]
  • Gough KC, Hawes WS, Kilpatrick J, Whitelam GC (2001) Cyanobacterial GR6 glutamate-1-semialdehyde aminotransferase: A novel enzyme-based selectable marker for plant transformation. Plant Cell Rep. 20: 296–300 [CrossRef] [Google Scholar]
  • Graham JB, Istock CA (1978) Genetic exchange in Bacillus subtilis in soil. Mol. Genet. Genom. 166: 287–290 [Google Scholar]
  • Graham JB, Istock CA (1979) Gene exchange and natural selection cause Bacillus subtilis to evolve in soil culture. Science 204: 637–639 [CrossRef] [PubMed] [Google Scholar]
  • Greaves MP, Wilson MJ (1970) The degradation of nucleic acids and montmorillonite-nucleic-acid complexes by soil microorganisms. Soil Biol. Biochem. 2: 257–268 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Greenpeace (2003) Monsanto out of our food. Greenpeace International Briefing for the World Social Forum, Porto Alegre, Brazil [Google Scholar]
  • Griffith F (1928) The significance of pneumococcal types. J. Hyg. 27: 113–159 [CrossRef] [PubMed] [Google Scholar]
  • Griffiths B, Caul S, Thompson JA, Birch N, Scrimgeour C, Cortet J, Foggo A, Hackett C, Henning Krogh P (2006) Soil microbial and faunal community responses to Bt maize and insecticide in two soils. J. Environ. Qual. 35: 734–741 [CrossRef] [PubMed] [Google Scholar]
  • Guerineau F, Brooks L, Meadows J, Lucy A, Robinson C, Mullineaux P (1990) Sulfonamide resistance gene for plant transformation. Plant Mol. Biol. 15: 127–136 [CrossRef] [PubMed] [Google Scholar]
  • Gulden R, Lerat HS, Hart MM, Powell JR, Trevors JT, Pauls PK, Klironomos JN, Swanton CJ (2005) Quantitation of transgenic plant DNA in Leachate water: real-time polymerase chain reaction analysis. J. Agric. Food Chem. 53: 5858–5865 [CrossRef] [PubMed] [Google Scholar]
  • Gyamfi S, Pfeifer U, Stierschneider M, Sessitsch A (2002) Effects of transgenic glufosinate-tolerant oilseed rape (Brassica napus) and the associated herbicide application on eubacterial and Pseudomonas communities in the rhizosphere. FEMS Microbiol. Ecol. 41: 181–190 [CrossRef] [PubMed] [Google Scholar]
  • Hails R, Kinderlerer J (2003) The GM public debate: context and communication strategies. Nat. Rev. Genet. 4: 819–825 [CrossRef] [PubMed] [Google Scholar]
  • Haldrup A, Petersen SG, Okkels FT (1998a) Positive selection: a plant selection principle based on xylose isomerase, an enzyme used in the food industry. Plant Cell Rep. 18: 76–81 [CrossRef] [Google Scholar]
  • Haldrup A, Petersen SG, Okkels FT (1998b) The xylose isomerase gene from Thermoanaerobacterium thermosulfurogenes allows effective selection of transgenic plant cells using D-xylose as the selection agent. Plant Mol. Biol. 37: 287–296 [CrossRef] [PubMed] [Google Scholar]
  • Hall L, Topinka K, Huffman J, Davis L, Good A (2000) Pollen flow between herbicide-resistant Brassica napus is the cause of multiple-resistant B. napus volunteers. Weed Sci. 48: 688–694 [CrossRef] [Google Scholar]
  • Hastings RC, Ceccherini MT, Miclaus N, Saunders JR, Bazzicalupo M, McCarthy AJ (1997) Direct molecular biological analysis of ammonia oxidising bacteria populations in cultivated soil plots treated with swine manure. FEMS Microbiol. Ecol. 23: 45–54 [CrossRef] [Google Scholar]
  • Hayford MB, Medford JI, Hoffman NL, Rogers SG, Klee HJ (1988) Development of a plant transformation selection system based on expression of genes encoding gentamycin acetyltransferases. Plant Physiol. 86: 1216–1222 [CrossRef] [PubMed] [Google Scholar]
  • Herrera-Estrella L, De Block M, Messens E, Hernalsteen J-P, Van Montagu M, Schell J (1983) Chimeric genes as dominant selectable markers in plant cells. EMBO J. 2: 987–995 [PubMed] [Google Scholar]
  • Heuer H, Kroppenstedt RM, Lottmann J, Berg G, Smalla K (2002) Effects of T4 lysozyme release from transgenic potato roots on bacterial rhizosphere communities are negligible relative to natural factors. Appl. Environ. Microbiol. 68: 1325–1335 [CrossRef] [PubMed] [Google Scholar]
  • Hille J, Verheggen F, Roelvink P, Franssen H, Kammen A, Zabel P (1986) Bleomycin resistance: a new dominant selectable marker for plant cell transformation. Plant. Mol. Biol. 7: 171–176 [CrossRef] [PubMed] [Google Scholar]
  • Hiltner L (1904) Über neue Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie. Arbeiten der Deutschen Landwirtschaftsgesellschaft 98: 59–78 [Google Scholar]
  • Horsch RB, Fry JE, Hoffmann NL, Eicholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227: 1229–1231 [CrossRef] [PubMed] [Google Scholar]
  • Howe AR, Gasser CS, Brown SM, Padgette SR, Hart J, Parker GB, Fromm ME, Armstrong CL (2002) Glyphosate as a selective agent for the production of fertile transgenic maize (Zea mays) plants. Mol. Breed. 10: 153–164 [CrossRef] [Google Scholar]
  • Irdani T, Bogani P, Mengoni A, Mastromei G, Buiatti M (1998) Construction of a new vector conferring methotrexate resistance in Nicotiana tabacum plants. Plant Mol. Biol. 37: 1079–1084 [CrossRef] [PubMed] [Google Scholar]
  • James C (2006) Executive summary of global status of commercialized Biotech/GM Crops: 2006. ISAAA Briefs No. 35, ISAAA: Ithaca, NY [Google Scholar]
  • Jelenska J, Tietze E, Tempe J, Brevet J (2000) Streptothricin resistance as a novel selectable marker for transgenic plant cells. Plant Cell Rep. 19: 298–303 [CrossRef] [Google Scholar]
  • Joersbo M, Okkels FT (1996) A novel principle for selection of transgenic plant cells: positive selection. Plant Cell Rep. 16: 219–221 [CrossRef] [PubMed] [Google Scholar]
  • Joersbo M, Donaldson I, Kreiberg J, Peterson SG, Brunstedt J, Okkels FT (1998) Analysis of mannose selection used for transformation of sugar beet. Mol. Breed. 4: 111–117 [CrossRef] [Google Scholar]
  • Kaeberlein T, Lewis K, Epstein SS (2002) Isolating "uncultivable" microorganisms in pure culture in a simulated natural environment. Science 296: 1127–1129 [CrossRef] [PubMed] [Google Scholar]
  • Kay E, Bertolla F, Vogel TM, Simonet P (2002a) Opportunistic colonization of Ralstonia solanacearum-infected plants by Acinetobacter sp. and its natural competence development. Microbiol. Ecol. 43: 291–297 [CrossRef] [PubMed] [Google Scholar]
  • Kay E, Vogel TM, Bertolla F, Nalin R, Simonet P (2002b) In situ transfer of antibiotic resistance genes from transgenic (transplastomic) tobacco plants to bacteria. Appl. Environ. Microbiol. 68: 3345–3351 [CrossRef] [PubMed] [Google Scholar]
  • Khan SM, Maliga P (1999) Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nat. Biotechnol. 17: 910–915 [CrossRef] [Google Scholar]
  • Khanna M, Stotzky G (1992) Transformation of Bacillus subtilis by DNA bound on montmorillonite and effect of DNase on the transforming ability of bound DNA. Appl. Environ. Microbiol. 58: 1930–1939 [PubMed] [Google Scholar]
  • Kobayashi I (2001) Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucl. Acids Res. 29: 3742–3756 [CrossRef] [Google Scholar]
  • Koziel MG, Adams TL, Hazlet MA, Damm D, Miller J, Dahlbeck D, Jayne S, Staskawicz BJ (1984) A cauliflower mosaic virus promoter directs expression of kanamycin resistance in morphogenic transformed plant cells. J. Mol. Appl. Genet. 2: 549–562 [PubMed] [Google Scholar]
  • Krens FA, Molendijk L, Wullems GJ, Schilperoort RA (1982) In vitro transformation of plant protoplasts with Ti-plasmid DNA. Nature 296: 72–74 [Google Scholar]
  • Kunze I, Ebneth M, Heim U, Geiger M, Sonnewald U, Herbers K (2001) 2-Deoxyglucose resistance: A novel selection marker for plant transformation. Mol. Breed. 7: 221–227 [CrossRef] [Google Scholar]
  • Lacks SA, Springhorn SS (1984) Transfer of recombinant plasmids containing the gene for DpnII DNA methylase into strains of Streptococcus pneumoniae that produce DpnI or DpnII restriction endonucleases. J. Bacteriol. 158: 905–909 [Google Scholar]
  • Lederberg J, Tatum EL (1946) Gene recombination in Escherichia coli. Nature 158: 558 [CrossRef] [Google Scholar]
  • Li YH, Lau PC, Lee JH, Ellen RP, Cvitkovitch DG (2001) Natural genetic transformation of Streptococcus mutans growing in biofilms. J. Bacteriol. 183: 897–908 [CrossRef] [PubMed] [Google Scholar]
  • Li YH, Tang N, Aspiras MB, Lau PC, Lee JH, Ellen RP, Cvitkovitch DG (2002) A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J. Bacteriol. 184: 2699–2708 [CrossRef] [PubMed] [Google Scholar]
  • Lorenz MG, Sikorski J (2000) The potential for intraspecific horizontal gene exchange by natural genetic transformation: sexual isolation among genomovars of Pseudomonas stutzeri. Microbiol. 146: 3081–3090 [Google Scholar]
  • Lorenz MG, Wackernagel W (1991) High frequency of natural genetic transformation of Pseudomonas stutzeri in soil extract supplemented with a carbon/energy and phosphorus source. Appl. Environ. Microbiol. 57: 1246–1251 [PubMed] [Google Scholar]
  • Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev. 58: 563–602 [PubMed] [Google Scholar]
  • Lukow T, Dunfield PF, Liesack W (2000) Use of the T-RFLP technique to assess spatial and temporal changes in the bacterial community structure within an agricultural soil planted with transgenic and non-transgenic potato plants. FEMS Microbiol. Ecol. 32: 241–247 [CrossRef] [PubMed] [Google Scholar]
  • Macneil DJ (1988) Characterization of a unique methyl-specific restriction system in Streptomyces avermitilis. J. Bacteriol. 170: 5607–5612 [Google Scholar]
  • Majewski J, Zawadzki P, Pickerill P, Cohan FM, Dowson CG (2000) Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation. J. Bacteriol. 182: 1016–1023 [CrossRef] [PubMed] [Google Scholar]
  • Maliga P, Svab Z, Harper EC, Jones JDG (1988) Improved expression of streptomycin resistance in plants due to a deletion in the streptomycin phosphotransferase coding sequence. Mol. Genet. Genom. 214: 456–459 [Google Scholar]
  • Mansouri H, Petit A, Oger P, Dessaux Y (2002) Engineered rhizosphere: the trophic bias generated by opine-producing plants is independent of the opine type, the soil origin, and the plant species. Appl. Environ. Microbiol. 68: 2562–2566 [CrossRef] [PubMed] [Google Scholar]
  • Margulis L (1981) Symbiosis in Cell Evolution. WH Freeman and Company, New York [Google Scholar]
  • Marvier M (2001) Ecology of transgenic crops. Am. Sci. 89: 160–167 [Google Scholar]
  • Marvier M, van Acker RC (2005) Can crop transgenes be kept on a leash? Front. Ecol. Environ. 3: 99–106 [CrossRef] [Google Scholar]
  • Matic I, Rayssiguier C, Radman M (1995) Interspecies gene exchange in bacteria: The role of SOS and mismatch repair systems in evolution of species. Cell 80: 507–515 [CrossRef] [PubMed] [Google Scholar]
  • McFadden GI (2001) Chloroplast origin and integration. Plant Physiol. 125: 50–53 [CrossRef] [PubMed] [Google Scholar]
  • Meier P, Wackernagel W (2003a) Mechanisms of homology-facilitated illegitimate recombination for foreign DNA acquisition in transformable Pseudomonas stutzeri. Mol. Microbiol. 48: 1107–1118 [Google Scholar]
  • Meier P, Wackernagel W (2003b) Monitoring the spread of recombinant DNA from field plots with transgenic sugar beet plants by PCR and natural transformation of Pseudomonas stutzeri. Transgenic Res. 12: 293–304 [Google Scholar]
  • Melzak KA, Sherwood CS, Turner RFB, Haynes CA (1996) Driving forces for DNA adsorption to silica in perchlorate solutions. J. Coll. Interface Sci. 181: 635–644 [CrossRef] [Google Scholar]
  • Mendum TA, Clark IM, Hirsch PR (2001) Characterization of two novel Rhizobium leguminosarum bacteriophages from a field release site of genetically-modified rhizobia. Antonie van Leeuwenhoek 79: 189–197 [CrossRef] [PubMed] [Google Scholar]
  • Miki B, McHugh S (2004) Selectable marker genes in transgenic plants: applications, alternatives and biosafety. J. Biotechnol. 107: 193–232 [CrossRef] [PubMed] [Google Scholar]
  • Molin S, Tolker-Nielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr. Opin. Biotechnol. 14: 255–261 [Google Scholar]
  • Motavalli PP, Kremer RJ, Fang M, Means NE (2004) Impact of genetically modified crops and their management on soil microbially mediated plant nutrient transformations. J. Environ. Qual. 33: 816–824 [CrossRef] [PubMed] [Google Scholar]
  • Nakamura Y, Itoh T, Matsuda H, Gobori T (2004) Biased function of horizontally transferred genes in prokaryotic genomes. Nat. Genet. 36: 760–766 [CrossRef] [PubMed] [Google Scholar]
  • Nannipieri P, Ascher J, Ceccherini MT, Landi L, Pietramellara G, Renella G (2003) Microbial diversity and soil functions. Europ. J. Soil Sci. 54: 655–670 [CrossRef] [Google Scholar]
  • Nielsen KM, Townsend JP (2004) Monitoring and modeling horizontal gene transfer. Nat. Biotechnol. 22: 1110–1114 [CrossRef] [PubMed] [Google Scholar]
  • Nielsen KM, van Elsas JD (2001) Stimulatory effects of compounds present in the rhizosphere on natural transformation of Acinetobacter sp. BD413 in soil. Soil Biol. Biochem. 33: 345–357 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Nielsen KM, van Weerelt MD, Berg TN, Bones AM, Hagler AN, van Elsas JD (1997) Natural transformation and availability of transforming DNA to Acinetobacter calcoaceticus in soil microcosms. Appl. Environ. Microbiol. 63: 1945–1952 [PubMed] [Google Scholar]
  • Nielsen KM, Bones AM, Smalla K, van Elsas JD (1998) Horizontal gene transfer from transgenic plants to terrestrial bacteria: a rare event? FEMS Microbiol. Rev. 22: 99–103 [Google Scholar]
  • Nielsen KM, Smalla K, van Elsas JD (2000a) Natural transformation of Acinetobacter sp. strain BD413 with cell lysates of Acinetobacter sp., Pseudomonas fluorescens, and Burkholderia cepacia in soil microcosms. Appl. Environ. Microbiol. 66: 206–212 [CrossRef] [PubMed] [Google Scholar]
  • Nielsen KM, van Elsas JD, Smalla K (2000b) Transformation of Acinetobacter sp. strain BD413 (pFG4Formula nptII) with transgenic plant DNA in soil microcosms and effects of kanamycin on selection of transformants. Appl. Environ. Microbiol. 66: 1237–1242 [CrossRef] [PubMed] [Google Scholar]
  • Normander B, Christensen BB, Molin S, Kroer N (1998) Effect of bacterial distribution and activity on conjugal gene transfer on the phylloplane of the bush bean (Phaseolus vulgaris). Appl. Environ. Microbiol. 64: 1902–1909 [PubMed] [Google Scholar]
  • Oger P, Petit A, Dessaux Y (1997) Genetically engineered plants producing opines alter their biological environment. Nat. Biotechnol. 15: 369–372 [Google Scholar]
  • Oger P, Mansouri H, Dessaux Y (2000) Effect of crop rotation and soil cover on alteration of the soil microflora generated by the culture of transgenic plants producing opines. Mol. Ecol. 9: 881–890 [CrossRef] [PubMed] [Google Scholar]
  • Ogram A, Sayler GS, Gustin D, Lewis RJ (1988) DNA Adsorption to soils and sediments. Environ. Sci. Technol. 22: 982–984 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Olszewski NE, Martin FB, Ausubel FM (1988) Specialized binary vector for plant transformation: expression of the Arabidopsis thaliana AHAS gene in Nicotiana tabacum. Nucleic Acids Res. 16: 10765–10781 [CrossRef] [PubMed] [Google Scholar]
  • Otero RDC, Hsieh P (1995) Homologous recombination proteins in prokaryotes and eukaryotes. Annual Rev. Genet. 29: 509–552 [CrossRef] [Google Scholar]
  • Ow DW (2002) Recombinase-directed plant transformation for the post-genomic era. Plant. Mol. Biol. 48: 183–200 [CrossRef] [PubMed] [Google Scholar]
  • Paget E, Simonet P (1994) On the track of natural transformation in soil. FEMS Microbiol. Ecol. 15: 109–117 [CrossRef] [Google Scholar]
  • Paget E, Jocteur Monrozier L, Simonet P (1992) Adsorption of DNA on clay minerals: protection against DNase I and influence on gene transfer. FEMS Microbiol. Lett. 97: 31–40 [Google Scholar]
  • Paget E, Lebrun M, Freyssinet G, Simonet P (1998) The fate of recombinant plant DNA in soil. Europ. J. Soil Biol. 34: 81–88 [Google Scholar]
  • Perez P, Tiraby G, Kallerhoff J, Perret J (1989) Phleomycin resistance as a dominant selectable marker for plant cell transformation. Plant Mol. Biol. 13: 365–373 [CrossRef] [PubMed] [Google Scholar]
  • Perl A, Galili S, Shaul O, Ben-Tzvi I, Galili G (1993) Bacterial dihydrodipicolinate synthase and desensitized aspartate kinase: Two novel selectable markers for plant transformation. Biotechnol. 11: 715–718 [Google Scholar]
  • Pietramellara G, Dal Canto L, Vettori C, Gallori E, Nannipieri P (1997) Effects of air-drying and wetting cycles on the transforming ability of DNA bound on clay minerals. Soil Biol. Biochem. 29: 55–61 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Pietramellara G, Franchi M, Gallori E, Nannipieri P (2001) Effect of molecular characteristics of DNA on its adsorption and binding on homoionic montmorillonite and kaolinite. Biol. Fertil. Soils 33: 402–409 [CrossRef] [Google Scholar]
  • Poly F, Chenu C, Simonet P, Rouiller J, Jocteur Monrozier L (2000) Differences between linear chromosomal and supercoiled plasmid DNA in their mechanisms and extent of adsorption on clay minerals. Langmuir 16: 1233–1238 [CrossRef] [Google Scholar]
  • Poté J, Ceccherini M, Van VT, Rosselli W, Wildi W, Simonet P, Vogel TM (2003) Fate and transport of antibiotic resistance genes in saturated soil columns. Europ. J. Soil Biol. 39: 65–71 [CrossRef] [Google Scholar]
  • Prudhomme M, Libante V, Claverys J-P (2002) Homologous recombination at the border: Insertion-deletions and the trapping of foreign DNA in Streptococcus pneumoniae. Proc. Natl. Acad. Sci. USA 99: 2100–2105 [CrossRef] [Google Scholar]
  • Quist D (2004) Transgene ecology: An ecological perspective for GMO risk assessment. In Breckling B, Verhoeven R, eds, Risk Hazard Damage - Specification of criteria to assess environmental impact of genetically modified organisms. Bundesamt für Naturschutz. Naturschutz und Biologische Vielfalt, Bonn, pp 239–244 [Google Scholar]
  • Ray JL, Nielsen KM (2005) Experimental methods for assaying natural transformation and inferring horizontal gene transfer. In Zimmer EA, Roalson EH, eds, Methods in Enzymology, Academic Press, pp 491–520 [Google Scholar]
  • Rayssiguier C, Thaler DS, Radman M (1989) The barrier to recombination between Escherichia coli and Salmonella typhimurium is disrupted in mismatch-repair mutants. Nature 342: 396–401 [CrossRef] [PubMed] [Google Scholar]
  • Redaschi N, Bickle TA (1996) Posttranscriptional regulation of EcoP1I and EcoP15I restriction activity. J. Mol. Biol. 257: 790–803 [Google Scholar]
  • Roberts MS, Cohan FM (1993) The effect of DNA sequence divergence on sexual isolation in Bacillus. Genetics 134: 401–408 [PubMed] [Google Scholar]
  • Romanowski G, Lorenz MG, Wackernagel W (1991) Adsorption of plasmid DNA to mineral surfaces and protection against DNase I. Appl. Environ. Microbiol. 57: 1057–1061 [PubMed] [Google Scholar]
  • Romanowski G, Lorenz MG, Wackernagel W (1993) Use of polymerase chain reaction and electroporation of Escherichia coli to monitor the persistence of extracellular plasmid DNA introduced into natural soils. Appl. Environ. Microbiol. 59: 3438–3446 [PubMed] [Google Scholar]
  • Saxena D, Stotzky G (2000) Insecticidal toxin from Bacillus thuringiensis is released from roots of transgenic Bt corn in vitro and in situ. FEMS Microbiol. Ecol. 33: 35–39 [CrossRef] [PubMed] [Google Scholar]
  • Saxena D, Flores S, Stotzky G (1999) Insecticidal toxin in root exudates from Bt corn. Nature 402: 480 [PubMed] [Google Scholar]
  • Schlüter K, Fütterer J, Potrykus I (1995) Horizontal gene transfer from a transgenic potato line to a bacterial pathogen (Erwinia chrysanthemi) occurs – if at all – at an extremely low frequency. Biotechnol. 13: 1094–1098 [CrossRef] [Google Scholar]
  • Schmalenberger A, Tebbe CC (2002) Bacterial community composition in the rhizosphere of a transgenic, herbicide-resistant maize (Zea mays) and comparison to its non-transgenic cultivar Bosphore. FEMS Microbiol. Ecol. 40: 29–37 [CrossRef] [PubMed] [Google Scholar]
  • Sengelov G, Kowalchuk GA, Sørensen SJ (2000) Influence of fungal-bacterial interactions on bacterial conjugation in the residuesphere. FEMS Microbiol. Ecol. 31: 39–45 [PubMed] [Google Scholar]
  • Siciliano SD, Germida JJ (1999) Taxonomic diversity of bacteria associated with the roots of field-grown transgenic Brassica napus cv. Quest, compared to the non-transgenic B. napus cv. Excel and B. rapa cv. Parkland. FEMS Microbiol. Ecol. 29: 263–272 [CrossRef] [Google Scholar]
  • Sikorski J, Graupner S, Lorenz M, Wackernagel W (1998) Natural genetic transformation of Pseudomonas stutzeri in a non-sterile soil. Microbiol. 144: 569–576 [CrossRef] [Google Scholar]
  • Smiles D (1988) Aspects of the physical environment of soil organisms. Biol. Fertil. Soils 6: 204–215 [Google Scholar]
  • Smith HO, Danner DB, Deich RA (1981) Genetic transformation. Annu. Rev. Biochem. 50: 41–68 [CrossRef] [PubMed] [Google Scholar]
  • Smith H, Tomb J, Dougherty B, Fleischmann R, Venter J (1995) Frequency and distribution of DNA uptake signal sequences in the Haemophilus influenzae Rd genome. Science 269: 538–540 [CrossRef] [PubMed] [Google Scholar]
  • Spoering AL, Gilmore MS (2006) Quorum sensing and DNA release in bacterial biofilms. Curr. Opin. Microbiol. 9: 133–137 [CrossRef] [PubMed] [Google Scholar]
  • Stephens PM, O'Sullivan M, O'Gara F (1987) Effect of bacteriophage on colonization of sugar beet roots by fluorescent Pseudomonas spp. Appl. Environ. Microbiol. 53: 1164–1167 [PubMed] [Google Scholar]
  • Stuy JH (1976) Restriction enzymes do not play a significant role in Haemophilus homospecific or heterospecific transformation. J. Bacteriol. 128: 212–220 [Google Scholar]
  • Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl. Acad. Sci. USA 90: 913–917 [CrossRef] [Google Scholar]
  • Svab Z, Harper EC, Jones JDG, Maliga P (1990) Aminoglycoside-3'-adenyltransferase confers resistance to spectinomycin and streptomycin in Nicotiana tabacum. Plant Mol. Biol. 14: 197–205 [CrossRef] [PubMed] [Google Scholar]
  • Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nature 3: 711–721 [Google Scholar]
  • Trevors JT (1996) Nucleic acids in the environment. Curr. Opin. Biotechnol. 7: 331–336 [CrossRef] [PubMed] [Google Scholar]
  • Ursin VM (1996) Aldehyde dehydrogenase selectable markers for plant transformation. WO 96/12029 [Google Scholar]
  • van Elsas JD, Bailey MJ (2002) The ecology of transfer of mobile genetic elements. FEMS Microbiol. Ecol. 42: 187–197 [PubMed] [Google Scholar]
  • van Elsas JD, Turner S, Bailey MJ (2003) Horizontal gene transfer in the phytosphere. New Phytol. 157: 525–537 [CrossRef] [Google Scholar]
  • Vettori C, Paffetti D, Pietramellara G, Stotzky G, Gallori E (1996) Amplification of bacterial DNA bound on clay minerals by the random amplified polymorphic DNA (RAPD) technique. FEMS Microbiol. Ecol. 20: 251–260 [CrossRef] [Google Scholar]
  • Waipara NW, Obanor FO, Walter M (2002) Impact of phylloplane management on microbial populations. New Zealand Pl. Prot. 55: 125–128 [Google Scholar]
  • Waldron C, Murphy EB, Roberts JL, Gustafson GD, Armour SL, Malcolm SK (1985) Resistance to hygromycin B. Plant Mol. Biol. 5: 103–108 [CrossRef] [PubMed] [Google Scholar]
  • Watrud L, Lee E, Fairbrother A, Burdick C, Reichman J, Bollman M, Storm M, King G, Van de Water P (2004) Evidence for landscape-level, pollen-mediated gene flow from genetically modified creeping bentgrass with CP4 EPSPS as a marker. Proc. Natl. Acad. Sci. USA 101: 14533–14538 [Google Scholar]
  • Weeks JT, Koshiyama KY, Maier-Greiner U, Schaeffner T, Anderson OD (2000) Wheat transformation using cyanamide as a new selective agent. Crop Sci. 40: 1749–1754 [CrossRef] [Google Scholar]
  • Widmer F, Seidler RJ, Donegan KK, Reed GL (1997) Quantification of transgenic plant marker gene persistence in the field. Mol. Ecol. 6: 1–7 [CrossRef] [Google Scholar]
  • Widmer F, Seidler RJ, Wartrud LS (1996) Sensitive detection of transgenic plant marker gene persistence in soil microcosms. Mol. Ecol. 5: 603–613 [Google Scholar]
  • Wisniewski JP, Frangne N, Massonneau A, Dumas C (2002) Between myth and reality: genetically modified maize, an example of a sizeable scientific controversy. Biochimie 84: 1095–1103 [CrossRef] [PubMed] [Google Scholar]
  • Zahrt TC, Maloy S (1997) Barriers to recombination between closely related bacteria: MutS and RecBCD inhibit recombination between Salmonella typhimurium and Salmonella typhi. Proc. Natl. Acad. Sci. USA 94: 9786–9791 [Google Scholar]
  • Zahrt TC, Buchmeier N, Maloy S (1999) Effect of mutS and recD mutations on Salmonella virulence. Infect. Immun. 67: 6168–6172 [PubMed] [Google Scholar]
  • Zhou H, Arrowsmith JW, Fromm ME, Hironaka CM, Taylor ML, Rodriguez D, Pajeau ME, Brown SM, Santino CG, Fry JE (1995) Glyphosate-tolerant CP4 and GOX genes as a selectable marker in wheat transformation. Plant Cell Rep. 15: 159–163 [PubMed] [Google Scholar]
  • Zinder N, Lederberg J (1952) Genetic exchange in Salmonella. J. Bacteriol. 64: 679–699 [Google Scholar]