Free Access
Environ. Biosafety Res.
Volume 4, Number 3, July-September 2005
Page(s) 167 - 177
Published online 16 March 2006
  • Barrett C, Cobb E, McNicol R, Lyan G (1997) A risk assessment study of plant genetic transformation using Agrobacterium tumefaciens and implications for analysis of transgenic plants. Plant Cell Tissue Organ Cult. 47:135–144 [Google Scholar]
  • Bernaerts MJ, De Ley J (1963) A biochemical test for crown gall bacteria. Nature 197: 406–407 [CrossRef] [Google Scholar]
  • Charity JA, Holland L, Donaldson SS, Grace L, Walter C (2002) Agrobacterium tumefaciens-mediated transformation of Pinus radiata organogenic tissue using vacuum-infiltration. Plant Cell Tissue Organ Cult. 70: 51–60 [CrossRef] [Google Scholar]
  • Charity JA, Holland L, Grace L, Walter C (2005) Consistent and stable expression of the nptII, uidA and bar genes in transgenic P. radiata after Agrobacterium tumefaciens-mediated transformation using nurse cultures. Plant Cell Rep. 23: 606–616 [CrossRef] [PubMed] [Google Scholar]
  • Chiter A, Forbes JM, Blair GE (2000) DNA stability in plant tissues: implications for the possible transfer of genes from genetically modified food. FEBS Letters 481: 161–168 [Google Scholar]
  • Cubero J, López M (2005) Agrobacterium tumefaciens Persistence in Plant Tissues after Transformation. In Methods in Molecular Biology, Volume 286, Peña L. (ed.), Transgenic Plants Methods and Protocols, Humana Press, Inc. Totowa, NJ [Google Scholar]
  • DeCleene M, DeLey J (1976) The host range of crown gall. Bot. Rev. 42: 389–466 [CrossRef] [Google Scholar]
  • Di-Giovanni F, Kevan PG (1991) Factors affecting pollen dynamics and its importance to pollen contamination: a review. Can. J. For. Res. 21: 1155–1170 [CrossRef] [Google Scholar]
  • Droege W, Puehler A, Selbitschka W (1999) Horizontal gene transfer among bacteria in terrestrial and aquatic habitats as assessed by microcosm and field studies. Biol. Fertil. Soils 29: 221–245 [CrossRef] [Google Scholar]
  • Ellstrand NC (2001) When transgenes wander, should we worry? Plant Physiol. 125: 1543–1545 [CrossRef] [PubMed] [Google Scholar]
  • Gelvin SB (2003) Improving plant genetic engineering by manipulating the host. Trends Biotechnol. 21: 95–98 [CrossRef] [PubMed] [Google Scholar]
  • Hallman J, Kloepper JW, Rodríguez-Kábana R (1997) Application of the scholander pressure bomb to studies on endophytic bacteria of plants. Can. J. Microbiol. 43: 411–416 [CrossRef] [Google Scholar]
  • Hammerschlag FA, Zimmerman RH, Yadava UL, Hunsucker S, Gercheva P (1997) Effect of antibiotics and exposure to an acidified medium on the elimination of Agrobacterium tumefaciens from apple leaf explants and on shoot regeneration. J. Amer. Soc. Hort. Sci. 122: 758–763 [Google Scholar]
  • Hay I, Morency M-J, Séguin A (2002) Assessing the persistence of DNA in decomposing leaves of genetically modified poplar trees. Can. J. For. Res. 32: 977–982 [CrossRef] [Google Scholar]
  • Holland L, Gemmell JE, Charity JA, Walter C (1997) Foreign Gene Transfer into Pinus radiata cotyledons by Agrobacterium tumefaciens. NZ J. For. Sci. 27: 289–304 [Google Scholar]
  • Holland L, Grace LJ, Charity JA (2002) Effect of vancomycin and Timentin on Pinus radiata embryogenic tissue and the elimination of bacteria after Agrobacterium tumefaciens mediated transformation. Forest Research Report No. 9379 [Google Scholar]
  • Hu W, Phillips G (2001) A combination of overgrowth-control antibiotics improves Agrobacterium tumefaciens-mediated transformation efficiency for cultivated tomato (L. esculentum). In Vitro Cell. Dev. Biol. - Plant 37: 12–18 [CrossRef] [Google Scholar]
  • Humara JM, Ordas RJ (1999) The toxicity of antibiotics and herbicides on in vitro adventitious shoot formation on Pinus pinea L. cotyledons. In Vitro Cell. Dev. Biol.- Plant 35: 339–343 [Google Scholar]
  • Jefferson A, Kavanagh A, Bevan W (1987) GUS fusions: beta-glucuronidase as sensitive marker in higher plants. EMBO J. 6: 3901–3907 [PubMed] [Google Scholar]
  • Klimaszewska K, Lachance D, Pelletier G, Lelu M-A, Séguin A (2001) Regeneration of transgenic Picea glauca, P. mariana and P. abies after cocultivation of embryogenic tissue with Agrobacterium tumefaciens. In Vitro Cell. Dev. Biol. - Plant 37: 748–755 [Google Scholar]
  • Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol. Gen. Genet. 204: 383–396 [CrossRef] [Google Scholar]
  • Kube P, Carson M (2004) A review of risk factors associated with clonal forestry of conifers. In Walter C, Carson MJ (ed.) Plantation forest Biotechnology for the 21st Century, Research SignPost, pp 337–362 [Google Scholar]
  • Kumar S, Fladung M (2001) Gene stability in transgenic aspen (Populus). II. Molecular characterisation of variable expression of transgenes in wild and hybrid aspen. Planta 213: 731–740 [CrossRef] [PubMed] [Google Scholar]
  • Le VQ, Belles-Isles J, Dusabenyagasani M, Tremblay FM (2001) An improved procedure for production of white spruce (Picea glauca) transgenic plants using Agrobacterium tumefaciens. J. Exp. Bot. 364: 2089–2095 [Google Scholar]
  • Leifert C, Cassells A (2001) Microbial hazards in plant tissue and cell cultures. In Vitro Cell. Dev. Biol. - Plant 37: 133–138 [CrossRef] [Google Scholar]
  • Lehoczky J (1968) Spread of Agrobacterium tumefaciens in the vessels of the grapevine, after natural infection. Phytopath. Z. 63: 239–246 [CrossRef] [Google Scholar]
  • Levée V, Garin E, Klimaszewska K, Séguin A (1999) Stable genetic transformation of white pine (Pinus strobus L.) after cocultivation of embryogenic tissues with Agrobacterium tumefaciens. Mol. Breed. 5: 429–440 [Google Scholar]
  • Lilley A, Fry J, Day J, Bailey M (1994) In situ transfer of an exogenously isolated plasmid between Pseudomonas spp. in sugarbeet rhizosphere. Microbiology 140: 27–33 [CrossRef] [Google Scholar]
  • Marti R, Cubero J, Daza A (1999) Evidence of migration and endophytic presence of Agrobacterium tumefaciens in rose plants. Eur. J. Plant Pathol. 105: 39–50 [Google Scholar]
  • Matzk A, Mantell S, Schiemann J (1996) Localization of persisting Agrobacterium tumefaciens in transgenic tobacco plants. Mol. Plant-Microbe Interact. 9: 373–381 [CrossRef] [Google Scholar]
  • Mogilner N, Zutra D, Gafny R, Bar-Joseph M (1993) The persistence of engineered Agrobacterium tumefaciens in agroinfected plants. Mol. Plant. Microbe Interact. 6: 673–675 [CrossRef] [PubMed] [Google Scholar]
  • Mullin JT, Bertand S (1998) Environmental release of transgenic trees in Canada – potential benefits and assessment of biosafety. For. Chron. 74: 203–219 [Google Scholar]
  • Nester EW, Gordon NP, Amasino RM, Yanofsky MF (1984) Crown Gall: A molecular and physiological analysis. Ann. Rev. Plant Physiol. 35: 387–413 [CrossRef] [Google Scholar]
  • Smith D (1996) Growth medium US Patent Number: 5, 565, 355 [Google Scholar]
  • Southern PM (1996) Bacteremia due to Agrobacterium tumefaciens (Radiobacter). Report of infection in a pregnant woman and her stillborn fetus. Diag. Microbiol. Infection Dis. 24: 43–45 [CrossRef] [Google Scholar]
  • Stewart C, Richards H, Halthill M (2000) Transgenic plants and biosafety: science, misconceptions and public perceptions. BioTechniques 29: 832–843 [Google Scholar]
  • Tang H, Ren ZR, Krczal G (2000) An evaluation of antibiotics for the elimination of Agrobacterium tumefaciens from walnut somatic embryos and for the effects on the proliferation of somatic embryos and regeneration of transgenic plants. Plant Cell Rep. 19: 881–887 [CrossRef] [Google Scholar]
  • Trontin J-F, Harvengt L, Garin E, Lopez-Bernaza M, Arancia L, Hoebeke J, Canlet F, Pâques M (2002) Towards genetic engineering of maritime pine (Pinus pinaster Ait.). Ann. For. Sci. 59: 687–697 [CrossRef] [EDP Sciences] [Google Scholar]
  • Tzfira T, Citovsky V (2003) The Agrobacterium tumefaciens-Plant cell interaction: Taking biology lessons from a bug. Plant Physiol. 133: 943–947 [CrossRef] [PubMed] [Google Scholar]
  • Yang H-L, Sun X-L, Song W, Wang Y-S, Cai M-Y (1999) Screening, identification and distribution of endophytic associative diazotrophs isolated from rice plants. Acta Botanica Sinica 41: 927–931 [Google Scholar]