Free Access
Issue
Environ. Biosafety Res.
Volume 3, Number 1, January-March 2004
Page(s) 17 - 28
DOI https://doi.org/10.1051/ebr:2004004
Published online 15 March 2004
  • Acord BD (1996) Availability of determination of nonregulated status for a squash line genetically engineered for virus resistance. Fed. Reg. 61: 33484–33485 [Google Scholar]
  • Bartsch D, Schmidt M, Pohl-Orf M, Haag C, Schuphan I (1996) Competitiveness of transgenic sugar beet resistant to beet necrotic yellow vein virus and potential impact on wild beet populations. Mol. Ecol. 5: 199–205 [Google Scholar]
  • Bartsch D, Brand U, Morak C, Pohl-Orf M, Schuphan I, Ellstrand NC (2001) Biosafety of hybrids between transgenic virus-resistant sugar beet and Swiss Chard. Ecol. Appl. 11: 142–147 [Google Scholar]
  • Blancard D, Lecoq H, Pitrat M (1994) Cucurbit Diseases: Observation, identification and control. Wiley and Sons, New York, NY [Google Scholar]
  • Boyette G, Templeton E, Oliver LR (1984) Texas gourd (Cucurbita texana) control. Weed Sci. 32: 649–655 [Google Scholar]
  • Burke JM, Rieseberg LH (2003) Fitness effects of transgenic disease resistance in sunflowers. Science 300: 1250 [CrossRef] [PubMed] [Google Scholar]
  • Dale J (1992) Spread of engineered genes to wild relatives. Plant Physiol. 100: 13–15 [Google Scholar]
  • Decker DS (1988) Origin(s), evolution, and systematics of Cucurbita pepo (Cucurbitaceae). Econ. Bot. 42: 4–15 [CrossRef] [Google Scholar]
  • Dietz-Pfeilestetter A, Kirchner M (1998) Analysis of gene inheritance and expression in hybrids between transgenic sugar beet and wild beets. Mol. Ecol. 7: 1693–1700 [Google Scholar]
  • Duffus JE (1971) Role of weeds in the incidence of virus diseases. Annu. Rev. Phytopathol. 9: 319–340 [Google Scholar]
  • Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc. Natl. Acad. Sci. USA 97: 7043–7050 [CrossRef] [Google Scholar]
  • Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu. Rev. Ecol. Syst. 30: 539–563 [Google Scholar]
  • Friess N, Maillet J (1996) Influence of cucumber mosaic virus infection on the intraspecific competitive ability and fitness of purslane. New Phytol. 132: 103–111 [CrossRef] [Google Scholar]
  • Friess N, Maillet J (1997) Influence of cucumber mosaic virus infection on the competitive ability and reproduction of chickweed (Stellaria media). New Phytol. 135: 887–674 [Google Scholar]
  • Fuchs M, Gonsalves D (1995) Resistance of transgenic hybrid squash ZW-20 expressing the coat protein genes of zucchini yellow mosaic virus and watermelon mosaic virus 2 to mixed infections by both potyviruses. Bio/Tech. 13: 14466–14473 [Google Scholar]
  • Fuchs M, Gonsalves D (1997) Genetic Engineering. In Rechcigl NA, Rechcigl JE, eds, Environmentally Safe Approcahes to Crop Disease Control, CRC Press, Boca Raton, FL, pp 333–368 [Google Scholar]
  • Fuchs M, Tricoli DM, McMaster JR, Carney KJ, Schesser M, McFerson JR, Gonsalves D (1998) Comparative virus resistance and fruit yield of transgenic squash with single and multiple coat protein genes. Plant Dis. 82: 1350–1356 [CrossRef] [Google Scholar]
  • Fuchs M, Chirco EM, Gonsalves D (2004) Movement of coat protein genes from a commercial virus-resistant transgenic squash into a wild relative. Environ. Biosafety Res. 3: 5–16 [Google Scholar]
  • Gonsalves D (1998) Control of papaya ringspot virus in papaya: A case study. Annu. Rev. Phytopathol. 36: 415–437 [CrossRef] [PubMed] [Google Scholar]
  • Grumet R (1994) Development of virus resistant plants via genetic engineering. Plant Breeding Rev. 12: 47–79 [Google Scholar]
  • Gueritaine G, Sester M, Eber F, Chèvre AM, Darmency H (2002) Fitness of backcross six of hybrids between transgenic oildseed rape (Brassica napus) and wild radish (Raphanus raphanistrum). Mol. Ecol. 11: 1419–1426 [Google Scholar]
  • Hancock JF, Grumet R, Hokanson SC (1996) The opportunity of escape of engineered genes from transgenic crops. HortSci. 31: 1080–1085 [Google Scholar]
  • Hokanson SC, Hancock JF, Grumet R (1997) Direct comparison of pollen-mediated movement of native and engineered genes. Euphytica 96: 397–403 [CrossRef] [Google Scholar]
  • Kareiva P, Morris W, Jacobi CM (1994) Studying and managing the risk of cross-fertilization between transgenic crops and wild relatives. Mol. Ecol. 3: 15–21 [Google Scholar]
  • Kelley SE (1993) Viruses and the advantage of sex in Anthoxanthum odoratum: A review. Plant Species Biol. 8: 217–223 [Google Scholar]
  • Kirkpatrick KJ, Wilson H (1988) Interpecific gene flow in Cucurbita: C. texana vs. C. pepo. Am. J. Bot. 75: 519–527 [CrossRef] [Google Scholar]
  • Klas FE, Fuchs M, Gonsalves D (1994) Spatial analysis as a tool to evaluate virus resistance in a transgenic crop. Phytopathol. 84: 1372 [Google Scholar]
  • Maskell LC, Raybould AF, Cooper JI, Edwards ML, Gray AJ (1999) Effects of turnip mosaic virus and turnip yellow mosaic virus on the survival, growth and reproduction of wild cabbage (Brassica oleracea). Ann. appl. Biol. 135: 401–407 [CrossRef] [Google Scholar]
  • McClement WD, Richards M (1956) Virus in wild plants. Can. J. Bot. 24: 793–799 [CrossRef] [Google Scholar]
  • McCreight JD, Staub J (1999) Report of the Cucurbit working group. In Traynor P, Westwood JH, eds, Proceedings of a Workshop on Ecological Effects of Pest Resistance Genes in Managed Ecosystems, Jan. 31-Feb. 3, ISB, Blacksburg, VA, pp 79–87 [Google Scholar]
  • Medley TL (1994) Availability of determination of nonregulated status for virus resistant squash. Fed. Reg. 59: 64187–64189 [Google Scholar]
  • Mikkelsen TR, Andersen B, Jørgensen RB (1996) The risk of crop transgene spread. Nature 380: 31 [Google Scholar]
  • Munger HM (1993) Breeding for viral resistance in cucurbits. In Resistance to viral diseases of vegetables: Genetics and breeding, Timber Press, Portland, OR, pp 8–43 [Google Scholar]
  • Oliver LR, Harrison SA, McClelland M (1983) Germination of Texas gourd (Cucurbita texana) and its control in soybean (Glycine max). Weed Sci. 31: 700–706 [Google Scholar]
  • Pallett DW, Thurston MI, Cortina-Borja M, Edwards ML, Alexander M, Mitchell E, Raybould AF, Cooper JI (2002) The incidence of viruses in wild Brassica rapa ssp. sylvestris in southern England. Ann. Appl. Biol. 141: 163–170 [Google Scholar]
  • Powell CA, Mountain WL, Derr MA (1992) Tomato ringspot virus reduces dandelion top weight and flower production under field conditions. HortScience 27: 273 [Google Scholar]
  • Quemada H (1998) The use of coat protein technology to develop virus-resistant cucurbits. In Ives CL, Bedford BM, eds, Agricultural Biotechnology in International Development, CAB International, Wallingford, UK, pp 147–160 [Google Scholar]
  • Quemada H, Strehlow L, Decker-Walters D, Staub J (2002) Case Study: Gene flow from commercial transgenic Cucurbita pepo to “wild” C. pepo populations. In Proceedings of the Scientific Methods Workshop on Ecological and Agronomic Consequences of Gene Flow from Transgenic Crops to Wild Relatives, March 5–6, 2002, Columbus, OH, pp 65–70, http://www.biosci.ohio-state.edu/~lspencer/gene_flow.htm [Google Scholar]
  • Quiot JB, Marchoux G, Douine L, Vigouroux A (1979) Écologie et épidémiologie du virus de la mosaïque du concombre dans le sud-est de la France. V. Rôle des espèces spontanées dans la conservation du virus. Ann. Phytopath. 11: 325–348 [Google Scholar]
  • Raybould A (1999) Transgenes and agriculture – going with the flow? Trends Plant Sci. 4: 247–248 [CrossRef] [PubMed] [Google Scholar]
  • Raybould AF, Maskell LC, Cooper JI, Edwards ML, Gray AJ (1999) The prevalence and spatial distribution of viruses in natural populations of Brassica oleracea. New Physiol. 141: 265–275 [Google Scholar]
  • Rissler J, Mellon M (1996) The Ecological Risks of Engineered Crops, MIT Press, Cambridge, MA, pp 159 [Google Scholar]
  • Sanford JC, Johnston SA (1985) The concept of parasite-derived resistance – deriving resistance genes from the parasite’s own genome. J. Theor. Biol. 113: 395–405 [CrossRef] [Google Scholar]
  • Snow AA, Palma PM (1997) Commercialization of transgenic plants: Potential ecological risks. BioScience 47: 86–96 [CrossRef] [Google Scholar]
  • Snow AA, Pilson D, Rieseberg LH, Paulsen MJ, Pleskac N, Reagon MR, Wolf DE, Selbo SM (2003) A Bt-transgene reduces herbivory and enhances fecundity in wild sunflowers. Ecol. Appl. 13: 279–286 [CrossRef] [Google Scholar]
  • Spencer LJ, Snow A (2001) Fecundity of transgenic wild-crop hybrids of Cucurbita pepo (Cucurbitaceae): implications for crop-to-wild gene flow. Heredity 86: 694–702 [CrossRef] [PubMed] [Google Scholar]
  • Thurston MI, Pallett DW, Cortina-Borja M, Edwards ML, Raybould AF, Cooper JI (2001) The incidence of viruses in wild Brassica nigra in Dorset (UK). Ann. Appl. Biol. 139: 277–284 [Google Scholar]
  • Tricoli DM, Carney KJ, Russell PF, McMaster JR, Groff DW, Hadden KC, Himmel PT, Hubbard JP, Boeshore ML, Quemada HD (1995) Field evaluation of transgenic squash containing single and multiple coat protein gene constructs for resistance to cucumber mosaic virus, watermelon mosaic virus 2, and zucchini yellow mosaic virus. Bio/Tech. 13: 1458–1465 [CrossRef] [Google Scholar]
  • Weidemann GJ, Templeton GE (1988) Efficacy and soil persistence of Fusarium solani f. sp. cucurbitae for control of Texas gourd (Cucurbita texana). Plant Dis. 72: 36–38 [CrossRef] [Google Scholar]
  • Wilson HD (1990) Gene flow in squash species. BioScience 40: 449–455 [CrossRef] [Google Scholar]
  • Zitter TA, Hopkins DL, Thomas CE (1996) Compendium of cucurbit diseases, APS Press, St Paul, MN [Google Scholar]