Free Access
Issue
Environ. Biosafety Res.
Volume 3, Number 1, January-March 2004
Page(s) 5 - 16
DOI https://doi.org/10.1051/ebr:2004003
Published online 15 March 2004
  • Acord BD (1996) Availability of determination of nonregulated status for a squash line genetically engineered for virus resistance. Fed. Reg. 61: 33484–33485 [Google Scholar]
  • Barstch D, Schuphan I (2002) Lessons we can learn from ecological biosafety research. J. Biotech. 98: 71–77 [CrossRef] [PubMed] [Google Scholar]
  • Boyette DC, Templeton GE, Oliver LR (1984) Texas gourd (Cucurbita texana) control with Fusarium solani f. sp. cucurbitae. Weed Sci. 32: 649–655 [Google Scholar]
  • Chèvre AM, Eber F, Baranger A, Renard M (1997) Gene flow from transgenic crops. Nature 389: 924 [CrossRef] [Google Scholar]
  • Chèvre AM, Eber F, Darmency H, Fleury A, Picault H, Letanneur JC, Renard M (2000) Assessment of interspecific hybridization between transgenic oilseed rape and wild radish under normal agronomic conditions. Ther. Appl. Genet. 100: 1233–1239 [CrossRef] [Google Scholar]
  • Conner AJ, Glare TR, Nap JP (2003) The release of genetically modified crops in the environment. Part II. Overview of ecological risk assessment. The Plant J. 33: 19–46 [Google Scholar]
  • Dale PJ, Clarke B, Fontes EMG (2002) Potential for the environmental impact of transgenic crops. Nature Biotech. 20: 567–574 [Google Scholar]
  • Decker DS (1988) Origin(s), evolution, and systematics of Cucurbita pepo (Cucurbitaceae). Econ. Bot. 42: 4–15 [CrossRef] [Google Scholar]
  • Decker-Walters DS, Walters TW, Cowan CW, Smith BD (1993) Isozymic characterization of wild populations of Cucurbita pepo. J. Ethnobiol. 13: 55–72 [Google Scholar]
  • Ellstrand NC, Schierenbeck KA (2000) Hybridization as a stimulus for the evolution of invasiveness in plants? Proc. Natl. Acad. Sci. USA 97: 7043–7050 [CrossRef] [Google Scholar]
  • Ellstrand N, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu. Rev. Ecol. Syst. 30: 539–563 [CrossRef] [Google Scholar]
  • Fuchs M, Gonsalves D (1995) Resistance of transgenic hybrid squash ZW-20 expressing the coat protein genes of zucchini yellow mosaic virus and watermelon mosaic virus 2 to mixed infections by both potyviruses. Bio/Tech. 13: 1466–1473 [CrossRef] [Google Scholar]
  • Fuchs M, Tricoli DM, McMaster JR, Carney KJ, Schesser M, McFerson JR, Gonsalves D (1998) Comparative virus resistance and fruit yield of transgenic squash with single and multiple coat protein genes. Plant Dis. 82: 1350–1356 [Google Scholar]
  • Fuchs M, Chirco EM, McFerson JR, Gonsalves D (2004) Comparative fitness of a wild squash species and three generations of hybrids between wild × virus-resistant transgenic squash. Environ. Biosafety Res. 3: 17–28 [Google Scholar]
  • Gates P (1995) The environmental impact of genetically engineered crops. Biotech. Gen. Eng. Rev. 13: 181–195 [Google Scholar]
  • Hancock JK, Grumet R, Hokanson SC (1996) The opportunity for escape of engineered genes from transgenic crops. HortScience 31: 1080–1085 [Google Scholar]
  • Hokanson SC, Hancock JF, Grumet R (1997a) Direct comparison of pollen-mediated movement of native and engineered genes. Euphytica 96: 397–403 [CrossRef] [Google Scholar]
  • Hokanson SC, Grumet R, Hancock JF (1997b) Effect of border rows and trap/donor ratios on pollen-mediated gene movement. Ecol. Appl. 7: 1075–1081 [CrossRef] [Google Scholar]
  • Jenczewski E, Ronfort J, Chèvre AM (2003) Crop-to-wild gene flow, introgression and possible fitness effects of transgenes. Environ. Biosafety Res. 2: 9–24 [Google Scholar]
  • Kareiva P, Morris W, Jacobi CM (1994) Studying and managing the risk of cross-fertilization between transgenic crops and wild relatives. Mol. Ecol. 3: 15–21 [Google Scholar]
  • Kirkpatrick KJ, Wilson H (1988) Interspecific gene flow in Cucurbita: C. texas vs. C. pepo. Am. J. Bot. 75: 519–527 [Google Scholar]
  • Kling J (1996) Could transgenic supercrops one day breed superweeds? Science 274: 180–181 [CrossRef] [Google Scholar]
  • Medley TL (1994) Availability of determination of nonregulated status for virus resistant squash. Fed. Reg. 59: 64187–64189 [Google Scholar]
  • Metz PLJ, Jacobsen E, Nap JP, Pereira A, Stiekema WJ (1997) The impact on biosafety of the phosphinothricin-tolerance transgene in inter-specific B. rapa × B. napus hybrids and their successive backcrosses. Theor. Appl. Genet. 95: 442–450 [CrossRef] [Google Scholar]
  • Mikkelsen TR, Andersen B, Jørgensen RB (1996) The risk of crop transgene spread. Nature 380: 31 [Google Scholar]
  • National Research Council (2000) Genetically modified pest-protected plants: Science and regulation. National Academy Press, Washington DC, http://www.nap.edu/books/0309069300/html/index.html [Google Scholar]
  • Nee M (1990) The domestication of Cucurbita (Cucurbitaceae). Econ. Bot. 42: 4–15 [Google Scholar]
  • Oliver LR, Harrison SA, McClelland M (1983) Germination of Texas gourd (Cucurbita texana) and its control in soybean (Glycine max). Weed Sci. 31: 700–706 [Google Scholar]
  • Polowick PL, Vandenberg A, Mahon JD (2002) Field assessment of outcrossing from transgenic pea (Pisum sativum L.) plants. Transgenic Res. 11: 515–519 [CrossRef] [PubMed] [Google Scholar]
  • Quemada H (1998) The use of coat protein technology to develop virus-resistant cucurbits. In Ives CL & Bedford BM, eds, Agricultural Biotechnology in International Development, CAB International, Wallingford, UK, pp 147–160 [Google Scholar]
  • Quemada H, Strehlow L, Decker-Walters D, Staub J (2002) Case Study: Gene flow from commercial transgenic Cucurbita pepo to “wild” C. pepo populations. In Proceedings of the Scientific Methods Workshop on Ecological and Agronomic Consequences of Gene Flow from Transgenic Crops to Wild Relatives, March 5–6, 2002, Columbus, OH, pp 65–70, http://www.biosci.ohio-state.edu/~lspencer/gene_flow.htm [Google Scholar]
  • Rissler J, Mellon M (1996) The Ecological Risks of Engineered Crops, MIT Press, Cambridge, MA [Google Scholar]
  • Smith BD (1997) The initial domestication of Cucurbita pepo in the Americas 10 000 years ago. Science 276: 932–934 [Google Scholar]
  • Snow AA, Palma PM (1997) Commercialization of transgenic plants: Potential ecological risks. BioScience 47: 86–96 [CrossRef] [Google Scholar]
  • Spencer LJ, Snow A (2001) Fecundity of transgenic wild-crop hybrids of Cucurbita pepo (Cucurbitaceae): implications for crop-to-wild gene flow. Heredity 86: 694–702 [CrossRef] [PubMed] [Google Scholar]
  • Tepfer M (2002) Risk assessment of virus-resistant transgenic plants. Annu. Rev. Phytopathol. 40: 467–491 [CrossRef] [PubMed] [Google Scholar]
  • Tricoli DM, Carney KJ, Russell PF, McMaster JR, Groff DW, Hadden KC, Himmel PT, Hubbard JP, Boeshore ML, Quemada HD (1995) Field evaluation of transgenic squash containing single or multiple virus coat protein gene constructs for resistance to cucumber mosaic virus, watermelon mosaic virus 2, and zucchini yellow mosaic virus. Bio/Tech 13: 1458–1465 [CrossRef] [Google Scholar]
  • Weidemann GJ, Templeton GE (1988) Efficacy and soil persistence of Fusarium solani f. sp. cucurbitae for control of Texas gourd (Cucurbita texana). Plant Dis. 72: 36–38 [CrossRef] [Google Scholar]
  • Wilson HD (1990) Gene flow in squash species. BioScience 40: 449–455 [CrossRef] [Google Scholar]
  • Wilson HD, Payne JS (1994) Crop/weed microgametophyte competition in Cucurbita pepo (Cucurbitaceae). Am. J. Bot. 81: 1531–1537 [Google Scholar]
  • Wilson HD, Doebley J, Duvall M (1992) Chloroplast DNA diversity among wild and cultivated members of Cucurbita (Cucurbitaceae). Theor. Appl. Genet. 84: 859–865 [PubMed] [Google Scholar]