Free Access
Environ. Biosafety Res.
Volume 2, Number 4, October-December 2003
Page(s) 263 - 276
Published online 15 January 2004
  • Asano S, Maruyama T, Iwasa T, Seki A, Takahashi M, Soares GG (1993) Evaluation of biological activity of Bacillus thuringiensis test samples using a diet incorporation method with diamondback moth, Plutella xylostella (Linnaeus) (Lepidoptera: Yponomeutidae). Appl. Entomol. Zool. 28: 513–524 [Google Scholar]
  • Bing DJ, Downey RK, Rakow GFW (1996) Hybridizations among Brassica napus, B. rapa and B. juncea and their two weedy relatives B. nigra and Sinapis arvensis under open pollination conditions in the field. Plant Breed. 115: 470–473 [Google Scholar]
  • Butts RA (1979) Some aspects of the biology and control of Plutella xylostella (L.) (Lepidoptera: Plutellidae) in southern Ontario. M.Sc. Thesis, University of Guelph, Guelph, Ontario [Google Scholar]
  • Canadian Corn Pest Coalition (2001) Canadian Corn Producers Unite to Protect BT Technology. accessed 30 April 2003 [Google Scholar]
  • Canadian Food Inspection Agency (2002) accessed 3 Dec. 2002 [Google Scholar]
  • Cao J, Tang JD, Strizhov N, Shelton AM, Earle ED (1999) Transgenic broccoli with high levels of Bacillus thuringiensis Cry 1C protein control diamondback moth larvae resistant to Cry1A or Cry1C. Mol. Breed. 5: 131–141 [CrossRef] [Google Scholar]
  • Cho HS, Cao J, Ren JP, Earle ED (2001) Control of Lepidopteran insect pests in transgenic Chinese cabbage (Brassica rapa ssp. pekinensis) transformed with a synthetic Bacillus thuringiensis cry1C gene. Plant Cell Rep. 20: 1–7 [CrossRef] [Google Scholar]
  • Dosdall LM, Mason PG, Olfert O, Kaminski L, Keddie BA (2003) The origins of infestations of diamondback moth, Plutella xylostella (L.), in canola in western Canada. Proceedings of the Fourth International Workshop on the Management of Diamondback Moth and Other Crucifer Pests, Melbourne, Australia. In Press [Google Scholar]
  • Ferré J, van Rie J (2002) Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Ann. Rev. Entomol. 47: 501–533 [Google Scholar]
  • González-Cabrera J, Herrero S, Ferré J (2001) High genetic variability for resistance to Bacillus thuringiensis toxins in a single population of diamondback moth. Appl. Environ. Micro. 67: 5043–5048 [CrossRef] [Google Scholar]
  • Halfhill MD, Richards HA, Mabon SA, Stewart CN Jr. (2001) Expression of GFP and Bt transgenes in Brassica napus and hybridization and introgression with Brassica rapa. Theor. Appl. Genet. 103: 659–667 [Google Scholar]
  • Halfhill MD, Millwood RJ, Raymer PL, Stewart CN Jr. (2002) Bt-transgenic oilseed rape hybridization with its weedy relative, Brassica rapa. Environ. Biosafety Res. 1: 19–28 [Google Scholar]
  • Hansen LB, Siegismund HR, Jorgenson RB (2001) Introgression between oilseed rape (Brassica napus L.) and its weedy relative B. rapa L. in a natural population. Genet. Res. Crop Evol. 48: 621–627 [Google Scholar]
  • Harcourt DG (1960) Biology of the diamondback moth, Plutella maculipennis (Curt.) (Lepidoptera: Plutellidae), in eastern Ontario III. Natural enemies. Can. Entomol. 92: 419–428 [CrossRef] [Google Scholar]
  • Hauser TP, Shaw RG, Ostergård H (1998a) Fitness of F1 hybrids between weedy Brassica rapa and oilseed rape (B. napus). Heredity 81: 429–435 [CrossRef] [Google Scholar]
  • Hauser TP, Jorgenson RB, Ostergård H (1998b) Fitness of backcross and F2 hybrids between weedy Brassica rapa and oilseed rape (B. napus). Heredity 81: 436–443 [CrossRef] [Google Scholar]
  • Howard RJ, Garland JA, Seaman WL (1994) Diseases and Pests of Vegetable Crops in Canada. Entomological Society of Canada and The Canadian Phytopathological Society, Ottawa, Ontario [Google Scholar]
  • James C (2001) Global Review of Commercialized Transgenic Crops: 2001. ISAAA Briefs No. 24–2001 ISAAA (International Service for the Acquisition of Agri-Biotech Applications), Ithaca, NY [Google Scholar]
  • Jin RG, Liu YB, Tabashnik BE, Borthakur D (2000) Development of transgenic cabbage (Brassica oleracea var. capitata) for insect resistance by Agrobacterium tumefaciens-mediated transformations. In Vitro Cell. Devel. Biol. Plant 36: 231–237 [CrossRef] [Google Scholar]
  • Jorgensen RB, Andersen B (1994) Spontaneous hybridization between oilseed rape (Brassica napus) and weedy B. campestris (Brassicaceae): a risk of growing genetically modified oilseed rape. Amer. J. Bot. 81: 1620–1626 [Google Scholar]
  • Kareiva P, Parker IM, Pascual M (1996) Can we use experiments and models in predicting the invasiveness of genetically engineered organisms? Ecology 77: 1670–1675 [CrossRef] [Google Scholar]
  • Landbo L, Andersen B, Jorgensen RB (1996) Natural hybridisation between oilseed rape and a wild relative: hybrids among seeds from weedy B. campestris. Hereditas 125: 89–91 [Google Scholar]
  • Liu YB, Tabashnik BE, Johnson MW (1995) Larval age affects resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol. 88: 788–792 [Google Scholar]
  • Liu YB, Tabashnik BE, Meyer SK, Crickmore N (2001) Cross-resistance and stability of resistance to Bacillus thuringiensis toxin Cry1C in diamondback moth. Appl. Environ. Micro. 67: 3216–3219 [CrossRef] [Google Scholar]
  • McGaughey WH, Gould F, Gelernter W (1998) Bt resistance management. Nat. Biotechnol. 16: 144–146 [CrossRef] [PubMed] [Google Scholar]
  • Metz TD, Roush RT, Tang JD, Shelton AM, Earle, ED (1995) Transgenic broccoli expressing a Bacillus thuringiensis insecticidal crystal protein: implications for pest resistance management strategies. Mol. Breed. 1: 309–317 [CrossRef] [Google Scholar]
  • Perez CP, Shelton AM (1997) Resistance of Plutella xylostella to Bacillus thuringiensis Berliner in central America. J. Econ. Entomol. 90: 87–93 [Google Scholar]
  • Philip H, Mengersen E (1989) Insect Pests of the Prairies. University of Alberta Press, Edmonton, Alberta [Google Scholar]
  • Putnam LG, Burgess L (1977) Insect Pests and Diseases of Rape and Mustard. Publication No. 48, Rapeseed Association of Canada [Google Scholar]
  • Ramachandran S, Buntin GD, All JN, Raymer PL, Stewart CN Jr. (1998a) Greenhouse and field evaluations of transgenic canola against diamondback moth, Plutella xylostella, and corn earworm, Helicoverpa zea. Entomol. Exper. Appl. 88: 17–24 [Google Scholar]
  • Ramachandran S, Buntin GD, All JN, Raymer PL, Stewart CN Jr. (1998b) Movement and survival of diamondback moth (Lepidoptera: Plutellidae) larvae in mixtures of nontransgenic and transgenic canola containing a cryIA (c) gene of Bacillus thuringiensis. Environ. Entomol. 27: 649–656 [Google Scholar]
  • Ramachandran S, Buntin GD, All JN, Tabashnik BE, Raymer PL, Adang MJ, Pulliam DA, Stewart CN Jr (1998c) Survival, development, and oviposition of resistant diamondback moth (Lepidoptera: Plutellidae) on transgenic canola producing a Bacillus thuringiensis toxin. J. Econ. Entomol. 91: 1239–1244 [Google Scholar]
  • Roush RT (1994) Managing pests and their resistance to Bacillus thuringiensis: can transgenic crops be better than sprays? Biocontrol. Sci. Technol. 4: 501–516 [CrossRef] [Google Scholar]
  • SAS Institute Inc. (1989) SAS/STATFormula users guide, version 6, 4th edition, volume 2. Cary, North Carolina: SAS Institute Inc. [Google Scholar]
  • Sayyed AH, Haward R, Herrero S, Ferré J, Wright DJ (2000) Genetic and biochemical approach for characteriza- tion of resistance to Bacillus thuringiensis toxin Cry1Ac in a field population of the diamondback moth, Plutella xylostella. Appl. Environ. Micro. 66: 1509–1516 [Google Scholar]
  • Shelton AM, Cooley RJ, Kroening MK, Wilsey WT, Eigenbrode SD (1991) Comparative analysis of two rearing procedures for diamondback moth. J. Entomol. Sci. 26: 17–26 [Google Scholar]
  • Shelton AM, Robertson JL, Tang JD, Perez C, Eigenbrode SD, Preisler HK, Wilsey WT, Cooley RJ (1993) Resistance of diamondback moth (Lepidoptera: Plutellidae) to Bacillus thuringiensis subspecies in the field. J. Econ. Entomol. 86: 697–705 [Google Scholar]
  • Snow AA (2002) Transgenic crops – why gene flow matters. Nat. Biotechnol. 20: 542 [PubMed] [Google Scholar]
  • Snow AA, Pilson D. Rieseberg LH, Paulsen MJ, Pleskac N, Reagon MR, Wolf DE, Selbo SM (2003) A Bt transgene reduces herbivory and enhances fecundity in wild sunflowers. Ecol. Applications 13: 279–286 [Google Scholar]
  • Stewart CN Jr., Adang MJ, All JN, Raymer PL, Ramachandran S, Parrott WA (1996) Insect control and dosage effects in transgenic canola containing a synthetic Bacillus thuringiensis cryIAc gene. Plant Physiol. 112: 115–120 [Google Scholar]
  • Stewart CN Jr., All JN, Raymer PL, Ramachandran S (1997) Increased fitness of transgenic insecticidal rapeseed under insect selection pressure. Mol. Ecol. 6: 773–779 [CrossRef] [Google Scholar]
  • Tabashnik BE (1994) Evolution of resistance to Bacillus thuringiensis. Ann. Rev. Entomol. 39: 47–79 [Google Scholar]
  • Tabashnik BE, Liu YB, Finson N, Masson L, Heckel DG (1997a) One gene in diamondback moth confers resistance to four Bacillus thuringiensis toxins. Proc. Nat. Acad. Sci. USA 94: 12780–12785 [CrossRef] [Google Scholar]
  • Tabashnik BE, Liu YB, Malvar T, Heckel DG, Masson L, Ballester V, Granero F, Ménsau JL, Ferré J (1997b) Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. Proc. Nat. Acad. Sci. USA 94: 12780–12785 [Google Scholar]
  • van Raamsdonk LWD, Schouten HJ (1997) Gene flow and establishment of transgenes in natural plant populations. Acta Bot. Neerlandica 46: 69–84 [Google Scholar]
  • Warwick SI, Beckie H, Small E (1999) Transgenic crops: new weed problems for Canada. Phytoprotection 80: 71–84 [Google Scholar]
  • Warwick SI, Beckie HJ, Thomas G, McDonald T (2000) The biology of Canadian weeds. 8. Sinapis arvensis L. (updated). Can. J. Plant Sci. 80: 939–961 [Google Scholar]
  • Warwick SI, Francis A, Susko DJ (2002) The biology of Canadian weeds. 9. Thlaspi arvense L. (updated). Can. J. Plant Sci. 82: 803–823 [Google Scholar]
  • Warwick SI, Simard M-J, Légère A, Beckie HJ, Braun L, Mason P, Zhu B, Séguin-Swartz G, Stewart CN Jr (2003) Hybridization between transgenic Brassica napus L. and its wild relatives: B. rapa L., Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.) O. E. Schulz. Theor. Appl. Genet. 107: 528–539 [CrossRef] [PubMed] [Google Scholar]
  • Western Committee on Crop Pests (1995) Minutes of the 34th Annual Meeting, October 19–21, 1995. Victoria, British Columbia [Google Scholar]
  • Western Committee on Crop Pests (2001) Minutes of the 41st Annual Meeting, October 15–16, Banff, Alberta [Google Scholar]
  • Xiang Y, Wong WKR, Ma MC, Wong RSC (1999) Agrobacterium-mediated transformation of Brassica campestris ssp. parachinensis with synthetic Bacillus thuringiensis cry1Ab and cry1Ac genes. Plant Cell Rep. 19: 251–256 [CrossRef] [Google Scholar]