Free Access
Issue
Environ. Biosafety Res.
Volume 2, Number 4, October-December 2003
Page(s) 219 - 246
DOI https://doi.org/10.1051/ebr:2003014
Published online 15 January 2004
  • Acciarri N, Vitelli G, Arpaia S, Mennella G, Sunseri F, Rotino GL (2000) Transgenic resistance to the Colorado potato beetle in Bt expressing eggplant fields. Hortscience 35: 722 [Google Scholar]
  • Agrawal AA (1999) Induced responses to herbivory in wild radish: Effects on several herbivores and plant fitness. Ecology 80: 1713 [CrossRef] [Google Scholar]
  • Agrawal AA, Strauss SY, Stout MJ (1999) Costs of induced responses and tolerance to herbivory in male and female fitness components of wild radish. Evolution 53: 1093 [CrossRef] [PubMed] [Google Scholar]
  • Alstad DN, Andow DA (1995) Managing the evolution of resistance to transgenic plants. Science 268: 1894 [CrossRef] [PubMed] [Google Scholar]
  • Andow DA (2002) Resisting resitance to Bt crops. In Letourneau DK, Burrows BE, eds, Genetically Engineered Organisms: Assessing Environmental and Human Health Effects. CRC Press, Boca Raton, FL, pp 99–121 [Google Scholar]
  • Archer TL, Schuster G, Patrick C, Cronholm G, Bynum ED, Morrison WP (2000) Whorl and stalk damage by European and Southwestern corn borers to four events of Bacillus thuringiensis transgenic maize. Crop Protection 19: 181 [CrossRef] [Google Scholar]
  • Ashfaq M, Young SY, McNew RW (2000) Development of Spodoptera exigua and Helicoverpa zea (Lepidoptera: Noctuidae) on transgenic cotton containing CrylAc insecticidal protein. J. Entomol. Sci. 35: 360 [Google Scholar]
  • Barbosa P (1993) Lepidopteran foraging on plants in agroecosystems: Constraints and consequences. In Stamp NE, Casey TM, eds, Ecological and Evolutionary Constraints on Foraging Caterpillars, pp 29 [Google Scholar]
  • Barbosa P (1998) ed, Conservation Biological Control. Academic Press [Google Scholar]
  • Benbrook CM, Groth E, Halloran JM, Hansen MK, Marquardt S (1996) Pest Management at the Crossroads. Consumers Union, Yonkers, New York [Google Scholar]
  • Bergelson J (1994) Changes in fecundity do not predict invasiveness: A model study of transgenic plants. Ecology 75: 249 [CrossRef] [Google Scholar]
  • Bergelson J, Purrington CB (2002) Factors affecting the spread of resistant Arabidopsis thaliana populations. In Letourneau DK, Burrows BE, eds, Genetically Engineered Organisms: Assessing Environmental and Human Health Effects. CRC Press, Boca Raton, FL, pp 33 [Google Scholar]
  • Betz FS, Hammond BG, Fuchs RL (2000) Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Regul. Toxicol. Pharmacol. 32: 156–173 [CrossRef] [PubMed] [Google Scholar]
  • Bourget D, Bethenod MT, Trouve C, Frederique V (2000) Host-plant diversity of the European corn borer Ostrinia nubilalis: What value for sustainable transgenic insecticidal Bt maize? Proc. R. Soc. Lond. B Biol. Sci. 267: 1177 [CrossRef] [Google Scholar]
  • Callaway RM, DeLuca TH, Belliveau WM (1999) Biological-control herbivores may increase competitive ability of the noxious weed Centaurea maculosa. Ecology 80: 1196–1201 [Google Scholar]
  • Caswell H (2001) Matrix Population Models. Sinauer, Sunderland, Massachusetts [Google Scholar]
  • Chèvre AM, Eber F, Baranger A, Hureau G, Barret P, Picault H, Renard M (1998) Characterization of backcross generations obtained under field conditions from oilseed rape wild radish F-1 interspecific hybrids – An assessment of transgene dispersal. Theor. Appl. Genet. 97: 90–98 [CrossRef] [Google Scholar]
  • Colwell RK, Norse EA, Pimentel D, Sharples FE, Simberloff D (1985) Genetic engineering in agriculture. Science 229: 111 [CrossRef] [PubMed] [Google Scholar]
  • Crawley M, Harvey PH, Purvis A (1996) Comparative ecology of the native and alien floras of the British Isles. Philos. Trans. R. Soc. Lond. B Biol. Sci. 351: 1251 [CrossRef] [Google Scholar]
  • Daehler CC, Strong DR (1996) Status, prediction and prevention of introduced cordgrass Spartina spp. Invasions in Pacific Estuaries, USA. Biol. Conserv. 78: 51–58 [CrossRef] [Google Scholar]
  • Darmency H (1994) The impact of hybrids between genetically modified crop plants and their related species – Introgression and weediness. Mol. Ecol. 3: 37–40 [CrossRef] [Google Scholar]
  • Doak DF (1991) The consequences of herbivory for dwarf fireweed: Different time scales, different morphological scales. Ecology 72: 1397 [CrossRef] [Google Scholar]
  • Doak DF (1992) Lifetime impacts of herbivory for a perennial plant. Ecology 73: 2086–2099 [CrossRef] [Google Scholar]
  • Dyer LA, Letourneau DK (1999) Trophic cascades in a complex terrestrial community. Proc. Natl. Acad. Sci. USA 96: 5072–5076 [CrossRef] [Google Scholar]
  • Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu. Rev. Ecol. Syst. 30: 539–563 [CrossRef] [Google Scholar]
  • Felton GW, Dahlman DL (1984) Allelochemical Induced Stress – Effects of L-canavanine on the pathogenicity of Bacillus thuringiensis in Manduca sexta. J. Invertebr. Pathol. 44: 187–191 [Google Scholar]
  • Fitton MG, Shaw MR, Gauld ID (1988) Pimpline ichneumon-flies, Hymenoptera, Ichneumonidae (Pimplinae). Handbook for the Identification of British Insects 7: 1 [Google Scholar]
  • Fretwell SD (1977) The regulation of plant communities by food chains exploiting them. Perspect. Biol. Med. 20: 169 [Google Scholar]
  • Geervliet JBF, Posthumus MA, Vet LEM, Dicke M (1997) Comparative analysis of headspace volatiles from different caterpillar-infested or uninfested food plants of Pieris species. J. Chem. Ecol. 23: 2935–2954 [CrossRef] [Google Scholar]
  • Hails RS (2000) Genetically modified plants – The debate continues. Trends. Ecol. Evol. 15: 14–18 [CrossRef] [PubMed] [Google Scholar]
  • Hauser TP, Shaw RG, Ostergard H (1998) Fitness of F-1 hybrids between weedy Brassica rapa and oilseed rape (B. napus). Heredity 81: 429–435 [CrossRef] [Google Scholar]
  • Hedin PA, Lindig OH, Sikorowski PP, Wyatt M (1978) Suppressants of gut bacteria in the boll weevil from the cotton plant. J. Econ. Entomol. 71: 394–396 [Google Scholar]
  • Hellmich RL, Siegfried BD, Sears MK, Stanley-Horn DE, Daniels MJ, Mattila HR, Spencer T, Bidne KG, Lewis LC (2001) Monarch larvae sensitivity to Bacillus thuringiensis-purified proteins and pollen. Proc. Natl. Acad. Sci. USA 98: 11925–11930 [CrossRef] [PubMed] [Google Scholar]
  • Hilbeck A (2002) Transgenic host plant resistance and non-target effects. In Letourneau DK, Burrows BE, eds, Genetically engineered organisms: assessing environmental and human health effects. CRC Press, Boca Raton, Florida, pp 33 [Google Scholar]
  • Hoffman CA (1990) Ecological risks of genetic engineering of crop plants: scientific and social analyses are critical to realize benefits of the new techniques. Bioscience 40: 434 [CrossRef] [Google Scholar]
  • Hull LA, Beers EH (1985) Ecological selectivity: modifying chemical control practices to preserve natural enemies. In Hoy MA, Herzog DC, eds, Biological Control in Agricultural IPM Systems. Academic Press, Inc., New York [Google Scholar]
  • James RR, Miller JC, Lighthart B (1993) Bacillus thuringiensis var. kurstaki affects a beneficial insect, the cinnabar moth (Lepidoptera: Arctiidae). J. Econ. Entomol. 86: 334 [Google Scholar]
  • Jenczewski E, Ronfort J, Chèvre AM (2003) Crop-to-wild gene flow, introgression and possible fitness effects of transgenes. Environ. Biosafety Res. 2: 9–24 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Jesse LCH, Obrycki JJ (2000) Field deposition of Bt transgenic corn pollen: lethal effects on the monarch butterfly. Oecologia 125: 241–248 [CrossRef] [Google Scholar]
  • Johnson KS, Scriber JM, Nitao JK, Smitley DR (1995) Toxicity of Bacillus thuringiensis var. kurstaki to three nontarget lepidoptera in field studies. Environ. Entomol. 24: 288–297 [Google Scholar]
  • Jorgensen RB, Andersen B (1994) Spontaneous hybridization between oilseed rape (Brassica napus) and weedy Brassica campestris (Brassicaceae) – a rise of growing genetically- modified oilseed rape. Am. J. Bot. 81: 1620–1626 [CrossRef] [Google Scholar]
  • Jorgensen RB, Andersen B, Landbo L, Mikkelsen TR, Dias JS, Crute I, Monteiro AA (1996) Spontaneous hybridization between oilseed rape (Brassica napus) and weedy relatives. Acta Hort. 407: 193 [Google Scholar]
  • Juenger T, Bergelson J (1998) Pairwise versus diffuse natural selection and the multiple herbivores of scarlet gilia, Ipomopsis aggregata. Evolution 52: 1583–1592 [Google Scholar]
  • Kareiva P, Morris W, Jacobi CM (1994) Studying and managing the risk of cross-fertilization between transgenic crops and wild relatives. Mol. Ecol. 3: 15–21 [CrossRef] [Google Scholar]
  • Kareiva P, Parker IM, Pascual M (1996) Can we use experiments and models in predicting the invasiveness of genetically engineered organisms. Ecology 77: 1670–1675 [CrossRef] [Google Scholar]
  • Klinger T (2002) Variability and uncertainty in crop-to-wild hybridization. In Letourneau DK, Burrows BE, eds, Genetically engineered organisms: assessing environmental and human health effects. CRC Press, Boca Raton, Florida, pp 1 [Google Scholar]
  • Klinger T, Ellstrand NC (1994) Engineered genes in wild populations – Fitness of weed-crop hybrids of Raphanus sativus. Ecol. Appl. 4: 117–120 [Google Scholar]
  • Koptur S (1990) Early season defoliation can affect Carex laxiflora Cyperaceae seed set in same year or reproductive allocation in subsequent years. Bull. Ecol. Soc. Am. 71: 217 [Google Scholar]
  • Krishik VA, Barbosa P, Reichelderfer CF (1988) Three trophic level interactions: allelochemicals, Manduca sexta, and Bacillus thuringiensis var. kurstaki Berliner. Environ. Entomol. 17: 476–482 [Google Scholar]
  • Kriticos D, Brown J, Radford I, Nicholas M (1999) Plant population ecology and biological control: Acacia nilotica as a case study. Biol. Control. 16: 230–239 [CrossRef] [Google Scholar]
  • Lefol E, Seguinswarts G, Downey RK (1997) Sexual hybridisation in crosses of cultivated Brassica species with the crucifers Erucastrum gallicum and Raphanus raphanistrum – Potential for gene introgression. Euphytica 95: 127–139 [CrossRef] [Google Scholar]
  • Letourneau DK, Hagen JA, Robinson GS (2002) Bt crops: Evaluating benefits under cultivation and risks from escaped transgenes in the wild. In Letourneau DK, Burrows BE, eds, Genetically Engineered Organisms: Assessing Environmental and Human Health Effects. CRC Press, Boca Raton, Florida, pp 33 [Google Scholar]
  • Losey JE, Obrycki JJ, Hufbauer RA (2002) Impacts of genetically engineered crops on non-target herbivores: Bt corn and monarch butterflies as a case study. In Letourneau DK, Burrows BE, eds, Genetically Engineered Organisms: Assessing Environmental and Human Health Effects. CRC Press, Boca Raton, Florida, pp 143 [Google Scholar]
  • Losey JE, Rayor LS, Carter ME (1999) Transgenic pollen harms monarch butterflies. Nature 399: 214 [CrossRef] [Google Scholar]
  • Louda SM (1999) Insect limitation of weedy plants and its implications. In Traynor PL, Westwood JH, eds, Conference Proceedings: Workshop on Ecological Effects of Pest Resistance Genes in Managed Ecosystems. Information Systems for Biotechnology, Bethesda, Maryland [Google Scholar]
  • Macintosh SC, Stone TB, Sims SR, Hunst PL, Greenplate JT, Marrone PG, Perlak J, Fischhoff DA, Fuchs RL (1990) Specificity and efficacy of purified Bacillus thuringiensis proteins against agronomically important insects. J. Invertebr. Pathol. 56: 258 [CrossRef] [PubMed] [Google Scholar]
  • Maron JL (1998) Insect Herbivory above- and below-ground – Individual and joint effects on plant fitness. Ecology 79: 1281–1293 [CrossRef] [Google Scholar]
  • Marquis RJ (1984) Leaf herbivores decrease fitness of a tropical plant. Science 226: 537 [CrossRef] [PubMed] [Google Scholar]
  • Marquis RJ (1992) A bite is a bite is a bite? Constraints on response to folivory in Piper arietinum (Piperaceae). Ecology 73: 143–152 [CrossRef] [Google Scholar]
  • Marvier M, Kareiva P (1999) Extrapolating from field experiments that remove herbivores to population-level effects of herbivore-resistant transgenes. In Traynor PL, Westwood JH, eds, Conference Proceedings: Workshop on Ecological Effects of Pest Resistance Genes in Managed Ecosystems. Information Systems for Biotechnology, Blacksburg, Virginia, http://www.nbiap.vt.edu [Google Scholar]
  • Mauricio R, Bowers MD, Bazzaz FA (1993) Pattern of leaf damage affects fitness of the annual plant Raphanus sativus (Brassicaceae). Ecology 74: 2066–2071 [CrossRef] [Google Scholar]
  • McCall PJ, Turlings TCJ, Loughrin J, Proveaux AT, Tumlinson JH (1994) Herbivore-induced volatile emissions from cotton (Gossypium hirsutum L.) seedlings. J. Chem. Ecol. 20: 3039–3050 [CrossRef] [PubMed] [Google Scholar]
  • McNaughton SJ (1986) On plants and herbivores. Am. Nat. 128: 765 [CrossRef] [Google Scholar]
  • Messeguer J, Fogher C, Guiderdoni E, Marfa V, Catala MM, Baldi G, Mele E (2001) Field assessments of gene flow from transgenic to cultivated rice (Oryza sativa L.) using a herbicide resistance gene as tracer marker. Theor. Appl. Genet. 103: 1151–1159 [CrossRef] [Google Scholar]
  • Meyer GA (2000) Interactive effects of soil fertility and herbivory on Brassica nigra. Oikos 88: 433–441 [Google Scholar]
  • Mikkelsen TR, Jensen J, Jorgensen RB (1996) Inheritance of oilseed rape (Brassica napus) RAPD markers in a backcross progeny with Brassica campestris. Theor. Appl. Genet. 92: 492–497 [Google Scholar]
  • Mullin CA, Croft BA (1985) An update on development of selective pesticides favoring arthropod natural enemies. In Hoy MA, Herzog DC, eds, Biological Control in Agriculture IPM Systems. Academic Press, Inc., New York [Google Scholar]
  • Naber AC, Aarssen LW (1998) Effects of shoot apex removal and fruit herbivory on branching, biomass and reproduction in Verbascum thapsus (Scrophulariaceae). Am. Midl. Nat. 140: 42–54 [CrossRef] [Google Scholar]
  • National Research Council (2000) Genetically Modified Pest-Protected Plants: Science and Regulation. National Academy Press, Washington DC [Google Scholar]
  • National Research Council (2002) Environmental Effects of Transgenic Plants: The scope and adequacy of regulation. National Academy Press, Washington DC [Google Scholar]
  • Navon A (1993) Control of lepidopteran pests with Bacillus thruingiensis. In Entwistle PF, Cory S, Bailey MJ, Higgs S, eds, Bacillus thuringiensis, an environmental biopesticide: theory and practice. Wiley, Chichester England, New York, pp 311 [Google Scholar]
  • Neeser C (1999) Report of the Brassica crops working group. In Traynor PL, Westwood JH, eds, Conference Proceedings: Workshop on Ecological Effects of Pest Resistance Genes in Managed Ecosystems. Information Systems for Biotechnology, Bethesda, Maryland [Google Scholar]
  • Obrycki JJ, Losey JE, Taylor OR, Jesse LCH (2001) Transgenic insecticidal corn: Beyond insecticidal toxicity to ecological complexity. Bioscience 51: 353–361 [CrossRef] [Google Scholar]
  • Parker IM (2000) Invasion dynamics of Cytisus scoparius: A matrix model approach. Ecol. Appl. 10: 726–743 [CrossRef] [Google Scholar]
  • Paulison MA (1987) Exploitation by, and the effects of, caterpillar grazers on the annual, Rudbeckia hirta (Compositae). Am. Midl. Nat. 117: 439 [CrossRef] [Google Scholar]
  • Peacock JW, Schweitzer DF, Carter JL, Dubois NR (1998) Laboratory assessment of the effects of Bacillus thuringiensis on native Lepidoptera. Environ. Entomol. 27: 450–457 [Google Scholar]
  • Peferoen M (1997) Progress and prospects for field use of Bt genes in crops. Trends Biotechnol. 15: 173–177 [Google Scholar]
  • Peterson G, Cunningham S, Deutsch L, Erickson J, Quinlan A, Raez-Luna E, Tinch R, Troell M, Woodbury P, Zens S (2000) The risks and benefits of genetically modified crops: A multidisciplinary perspective. Conserv. Ecol. 4: 38–49 [Google Scholar]
  • Phipps RH, Park JR (2002) Environmental benefits of genetically modified crops: Global and European perspectives on their ability to reduce pesticide use. J. Anim. Feed. Sci. 11: 1–18 [Google Scholar]
  • Pilson D (1996) Two herbivores and constraints on selection for resistance in Brassica rapa. Evolution 50: 1492 [CrossRef] [PubMed] [Google Scholar]
  • Pilson D (2000) Herbivory and natural selection on flowering phenology in wild sunflower, Helianthus annuus. Oecologia 122: 72–82 [Google Scholar]
  • Pilson D, Decker KL (2002) Compensation for herbivory in wild sunflower: Response to simulated damage by the head- clipping weevil. Ecology 83: 3097–3107 [CrossRef] [Google Scholar]
  • Price PW (1992) Plant resources as the mechanistic basis for insect herbivore population dynamics. In Hunter MD, Ohgushi T, Price PW, eds, Effects of Resource Distribution on Animal-Plant Interactions. Academic Press, San Diego, California, pp 139 [Google Scholar]
  • Reichelderfer CF (1991) Interactions among allelochemicals, some Lepidoptera, Bacillus thuringiensis Berliner. In Barbosa B, Kirschik VA, Jones CG, eds, Microbial Mediation of Plant-Herbivore Interactions. Wiley Press, New York [Google Scholar]
  • Robinson GS (1998) Bugs, hollow curves and species-diversity indexes. STATS – American Statistical Association 21 [Google Scholar]
  • Robinson GS (1999) HOSTS – A database of the hostplants of the world's Lepidoptera. Nota Lepidopterologica 22: 35 [Google Scholar]
  • Robinson GS, Ackery PR, Kitching IJ, Beccaloni GW, Hernandez LM (2001) Hostplants of the moth and butterfly caterpillars of the oriental region. Southdene Sdn Bhd, Kuala Lumpur [Google Scholar]
  • Robinson GS, Ackery PR, Kitching IJ, Beccaloni GW, Hernandez LM (2002a) Hostplants of the moth and butterfly caterpillars of America north of Mexico. Mem. Am. Entomol. Inst. 69: 1–824 [Google Scholar]
  • Robinson GS, Ackery PR, Kitching IJ, Beccaloni GW, Hernandez LM (2002b) HOSTS – A database of hostplants of the world's Lepidoptera, http://www/nhm.ac.uk/entomology/hostplants/index.html [Google Scholar]
  • Royal Society of Canada (2001) An Expert Panel Report on the Future of Food Biotechnology. The Royal Society of Canada, Ottawa, Canada [Google Scholar]
  • Saxena D, Flores S, Stotzky G (1999) Insecticidal toxin in root exudates from Bt corn. Nature 402: 480 [PubMed] [Google Scholar]
  • Schuster MR, Calderon M (1986) Interactions of host plant resistant genotypes and beneficial insects in cotton ecosys- tems. In Boethel DJ, Eikenbary RD, eds, Interaction of Host Plant Resistance and Parasitoids and Predators of Insects. Halstead Press, New York, pp 84–97 [Google Scholar]
  • Sears MK, Hellmich RL, Stanley-Horn DE, Oberhauser KS, Pleasants JM, Mattila HR, Siegfried BD, Dively GP (2001) Impact of Bt corn pollen on monarch butterfly populations: A risk assessment. Proc. Natl. Acad. Sci. USA 98: 11937–11942 [CrossRef] [PubMed] [Google Scholar]
  • Shea K, Kelly D (1998) Estimating biocontrol agent impact with matrix models: Carduus nutans in New Zealand. Ecol. Appl. 8: 824–832 [CrossRef] [Google Scholar]
  • Smith RA, Couche GA (1991) The phylloplane as a source of Bacillus thuringiensis variants. Appl. Environ. Microbiol. 57: 311 [PubMed] [Google Scholar]
  • Snow AA, Andersen B, Jorgensen RB (1999) Costs of transgenic herbicide resistance introgressed from Brassica napus into weedy B. rapa. Mol. Ecol. 8: 605–615 [Google Scholar]
  • Snow AA, Palma PM (1997) Commercialization of transgenic plants: Potential ecological risks. Bioscience 47: 206–206 [CrossRef] [Google Scholar]
  • Snow AA, Pilson D, Rieseberg LH, Paulsen MJ, Pleskac N, Reagon MR, Wolf DE, Selbo SM (2003) A Bt transgene reduces herbivory and enhances fecundity in wild sunflowers. Ecol. Appl. 13: 279–286 [CrossRef] [Google Scholar]
  • Song ZP, Lu BR, Zhu YG, Chen JK (2003) Gene flow from cultivated rice to the wild species Oryza rufipogon under experimental field conditions. New Phytol. 157: 657–665 [CrossRef] [Google Scholar]
  • Srinivasan G, Babu PC (2001) Effects of Bacillus thuringiensis Berliner on predatory green lacewing, Chrysoperla carnea Stephens (Chrysopidae: Neroptera). Pestic Res. J. 13: 266–269 [Google Scholar]
  • Stewart CN, All JN, Raymer PL, Ramachandran S (1997) Increased fitness of transgenic insecticidal rapeseed under insect selection pressure. Mol. Ecol. 6: 773–779 [CrossRef] [Google Scholar]
  • Story JM, Good WR, White LJ, Smith L (2000) Effects of the interaction of the biocontrol agent Agapeta zoegana L. (Lepidoptera: Cochylidae) and grass competition on spotted knapweed. Biol. Control 17: 182–190 [CrossRef] [Google Scholar]
  • Strauss SY, Siemens DH, Decher MB, Mitchell-Olds T (1999) Ecological costs of plant resistance to herbivores in the currency of pollination. Evolution 53: 1105–1113 [CrossRef] [PubMed] [Google Scholar]
  • Strong DR (1984) Density-vague ecology and liberal population regulation in insects. In Price PW, Slobodchikoff CN, Gaud WS, eds, Wiley, New York, pp 313 [Google Scholar]
  • Strong DR (1992) Are trophic cascades all wet – Differentiation and donor-control in speciose ecosystems. Ecology 73: 747–754 [CrossRef] [Google Scholar]
  • Tiedje JM, Colwell RK, Grossman YL, Hodson RE, Lenski RE, Mack RN, Regal PJ (1989) The planned introduction of genetically engineered organisms: ecological considerations and recommendations. Ecology 70: 298 [CrossRef] [Google Scholar]
  • Tscharntke T (1999) Insects on common reed (Phragmites australis): community structure and the impact of herbivory on shoot growth. Aquat. Bot. 64: 399–410 [CrossRef] [Google Scholar]
  • Turkington R, Klein E, Chanway CP (1993) Interactive effects of nutrients and disturbance – an experimental test of plant strategy theory. Ecology 74: 863–878 [CrossRef] [Google Scholar]
  • Turlings TCJ, Bernasconi M, Bertossa R, Bigler F, Caloz G, Dorn S (1998) The induction of volatile emissions in maize by three herbivore species with different feeding habits – Possible consequences for their natural enemies. Biol. Control 11: 122–129 [CrossRef] [Google Scholar]
  • U N (1935) Genome-analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jap. J. Bot. 7: 389–452 [Google Scholar]
  • van Frankenhuyzen K, Nystrom C (1999) The Bacillus thuringiensis toxin specificity database. http://www.glfc.cfs.nrcan.gc.ca/bacillus; [Google Scholar]
  • van Frankenhuyzen K, Gringorten JL, Milne RE, Gauthier D, Pusztai M, Brousseau R, Masson L (1991) Specificity of activated Cry1a proteins from Bacillus thuringiensis subsp. kurstaki Hd-1 for defoliating forest Lepidoptera. Appl. Environ. Microbiol. 57: 1650–1655 [PubMed] [Google Scholar]
  • Volenberg DS, Hopen HJ, Campobasso G (1999) Biological control of yellow toadflax (Linaria vulgaris) by Eteobalea serratella in peppermint (Mentha piperita). Weed Sci. 47: 226–232 [Google Scholar]
  • Wagner DL, Peacock JW, Carter JL, Talley SE (1996) Field assessment of Bacillus thuringiensis on nontarget lepidoptera. Environ. Entomol. 25: 1444–1454 [Google Scholar]
  • Wolfenbarger LL, Phifer PR (2000) The ecological risks and benefits of genetically engineered plants. Science 290: 2088 [CrossRef] [PubMed] [Google Scholar]
  • Zangerl AR, McKenna D, Wraight CL, Carroll M, Ficarello P, Warner R, Berenbaum MR (2001) Effects of exposure to event 176 Bacillus thuringiensis corn pollen on monarch and black swallowtail caterpillars under field conditions. Proc. Natl. Acad. Sci. USA 98: 11908–11912 [CrossRef] [PubMed] [Google Scholar]