Open Access
Review
Issue
Environ. Biosafety Res.
Volume 9, Number 2, April-June 2010
Page(s) 67 - 73
Section Reviews
DOI https://doi.org/10.1051/ebr/2010009
Published online 08 December 2010
  • Allainguillaume J, Harwood T, Ford CS, Cuccato G, Norris C, Allender CJ, Welters R, King GJ, Wilkinson MJ (2009) Rapeseed cytoplasm gives advantage in wild relatives and complicates genetically modified crop biocontainment. New Phytol. 183: 1201–1211 [CrossRef] [PubMed] [Google Scholar]
  • Avni A, Edelmann M (1991) Direct selection for paternal inheritance of chloroplasts in sexual progeny of Nicotiana. Mol. Gen. Genet. 225: 273–277 [CrossRef] [PubMed] [Google Scholar]
  • Azhagiri AK, Maliga P (2007) Exceptional paternal inheritance of plastids in Arabidopsis suggests that low-frequency leakage of plastids via pollen may be universal in plants. Plant J. 52: 817–823 [CrossRef] [PubMed] [Google Scholar]
  • Benitez ER, Khan NA, Matsumura H, Abe J, Takahas R (2010) Varietal differences and morphology of cleistogamy in soybean. Crop Sci. 50: 185–190 [CrossRef] [Google Scholar]
  • Birky CW (1995) Uniparental inheritance of mitochondrial and chloroplast genes: Mechanisms and evolution. Proc. Natl. Acad. Sci. USA 92: 11331–11338 [CrossRef] [Google Scholar]
  • Bock R, Khan MS (2004) Taming plastids for a green future. Trends Biotechnol. 22: 311–318 [CrossRef] [PubMed] [Google Scholar]
  • Bock R, Timmis JN (2008) Reconstructing evolution: gene transfer from plastids to the nucleus. Bioassays 30: 556–566 [CrossRef] [Google Scholar]
  • Budar F, Touzet P, De Paepe R (2003) The nucleo-mitochondrial conflict in cytoplasmic male sterilities revisited. Genetica 117: 3–16 [CrossRef] [PubMed] [Google Scholar]
  • Chase CD (2006) Genetically engineered cytoplasmic male sterility. Trends Plant Sci. 11: 7–9 [CrossRef] [PubMed] [Google Scholar]
  • Chase CD (2007) Cytoplasmic male sterility: a window to the world of plantmitochon-drial-nuclear interaction. Trends Genet. 23: 81–90 [CrossRef] [PubMed] [Google Scholar]
  • Chase CD, Gabay-Laughnan S (2004) Cytoplasmic male sterility and fertility restoration by nuclear genes. In Daniell H, Chase CD, eds, Molecular Biology and Biotechnology of Plant Organelles, Springer, New York, pp 593–622 [Google Scholar]
  • Cilier M, Feruzan D, Göksel O (2004) Histological aspects of anther wall in male fertile and cytoplasmic male sterile Helianthus annuus L. Asi. J. Plant Sci. 3: 145–150 [CrossRef] [Google Scholar]
  • Connor HE (1979) Breeding systems in the grasses: a survey. New Zealand Journal of Botany 17: 547–574 [Google Scholar]
  • Conner AJ, Glare TR, Nap JP (2003) The release of genetically modified crops into the environment – Part II. Overview of ecological risk assessment. Plant J. 33: 19–46 [CrossRef] [PubMed] [Google Scholar]
  • Cummins JE (1998) Chloroplast-transgenic plants are not a gene flow panacea. Nat. Biotechnol. 16: 401 [CrossRef] [PubMed] [Google Scholar]
  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat. Biotechnol. 20: 581–586 [PubMed] [Google Scholar]
  • Daniell H, Kumar S, Dufourmantel N (2005) Breakthrough in chloroplast genetic engineering of agronomically important crops. Trends Biotechnol. 23: 238–245 [CrossRef] [PubMed] [Google Scholar]
  • De Maagd RA, Boutilier K (2009) Efficacy of strategies for biological containment of transgenic crops. A literature review. Plant Research International, Note 650 [Google Scholar]
  • DeCosa B, Moar W, Lee SB, Miller M, Daniell H (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat. Biotechnol. 19: 71–74 [CrossRef] [PubMed] [Google Scholar]
  • Den Nijs HCM, Bartsch D, Sweet J (eds) (2004) Introgression from genetically modified plants into wild relatives. CABI, p 432 [Google Scholar]
  • Derepas A, Dulieu H (1992) Inheritance of the capacity to transfer plastids by the pollen parent in Petunia hybrida hort. Heredity 83: 6–10 [Google Scholar]
  • Diaz A, MacNair MR (1998) The effect of plant size on the expression of cleistogamy in Mimulus nasutus. Funct. Ecol. 12: 92–98 [Google Scholar]
  • Dong J, Wagner DB (1994) Paternally inherited chloroplast polymorphism in Pinus: estimation of diversity and population subdivision, and tests of disequilibrium with maternally inherited mitochondrial polymorphism. Genetics 136: 1187–1194 [PubMed] [Google Scholar]
  • Dunwell JC, Ford CS (2005) Technologies for biological containment of GM- and non-GM-crops. Final Report, Defra Contract CBEC 47 [Google Scholar]
  • EFSA (2009) Scientific opinion on guidance for the risk assessment of genetically modified plants used for non-food or non-feed purposes. EFSA Journal 1164: 1–42 [Google Scholar]
  • Fan ZG, Stefansson BR (1986) Influence of temperature on sterility of 2 cytoplasmic male-sterility systems in rape (Brassica napus L.). Can J. Plant Sci. 66: 221–227 [CrossRef] [Google Scholar]
  • Gealy DR (2005) Gene movement between rice (Oryza sativa) and weedy rice (Oryza sativa): a U.S. temperate rice perspective. In Gressel J., ed, Crop Ferality and Volunteerism, CRC Press [Google Scholar]
  • Gidoni D, Srivastava V, Carmi N (2008) Site-specific excisional recombination strategies for elimination of undesirable transgenes from crop plants. In Vitro Cell Dev. Biol. - Plant 44: 457–467 [CrossRef] [Google Scholar]
  • Gressel J, Al-Ahmad H (2005) Assessing and managing biological risks of plants used for bioremediation, including risks of transgene flow. Z. Nat. forsch. 60c: 154–165 [Google Scholar]
  • Gressel J, Valverde BE (2009) A strategy to provide long-term control of weedy rice while mitigating herbicide resistance transgene flow, and its potential use for other crops with related weeds. Pest. Manag. Sci. 65: 723–731 [CrossRef] [PubMed] [Google Scholar]
  • Grevich JJ, Daniell H (2005) Chloroplast genetic engineering: Recent advances and future perspectives. Crit. Rev. Plant Sci. 24: 83–107 [CrossRef] [Google Scholar]
  • Havey M (2004) The use of cytoplasmic male-sterility in hybrid seed production. In Daniell H, Chase C, eds, Molecular Biology and Biotechnology of Plant Organelles, Springer, New York, pp 623–634 [Google Scholar]
  • Haygood RA, Ives AR, Andow DA (2004) Population genetics of transgene containment. Ecol. Lett. 7: 213–220 [CrossRef] [Google Scholar]
  • Hoshikawa K (1993) Anthesis, fertilization and development of caryopsis. In Matsuo T, Hoshikawa K, eds, Science of the rice plant, vol. 1 (Morphology), Food and Agriculture Policy Research Center, Nobunkyo Publ. Co, Tokyo, pp 339–376 [Google Scholar]
  • Hüsken A, Dietz-Pfeilstetter A (2007) Pollen-mediated gene flow from herbicide-resistant oilseed rape (Brassica napus L.). Trans. Res. 16: 557–569 [CrossRef] [PubMed] [Google Scholar]
  • Hvarleva T, Hristova M, Bakalova A, Hristov M, Atanossov I, Atanassov A (2009) CMS lines for evaluation of pollen flow in sunflower relevance for transgene flow mitigation. Biotechnol. Biotechnol. Equip. 23: 1309–1315 [Google Scholar]
  • Kriete G, Niehaus K, Perlick AM, Puhler A, Broer I (1996) Male sterility in transgenic tobacco plants induced by tapetum-specific deacetylation of the externally applied non-toxic compound N-acetyl-L-phosphinothricin. Plant J. 9: 809–818 [CrossRef] [PubMed] [Google Scholar]
  • Kuraichi N, Makino T, Hirose S (1994) Inheritance of cleistogamy-chasmogamy in barley. Barley Genet. Newsl. 23: 19 [Google Scholar]
  • Latha R, Thiyagarajan K, Senthilvel S (2004) Genetics, fertility behavior and molecular marker analysis of a new TGMS line, TS6, in rice. Plant Breed. 123: 235–240 [CrossRef] [Google Scholar]
  • Leflon M, Pinochet X, Hüsken A, Pendergast D, Knightly S (2009a) Cleistogamy of oilseed rape: a way to prevent pollen flow at the field scale ? In 5th ISHS International Symposium on Brassicas, Programme and Abstract Book, Lillehammer, Norway [Google Scholar]
  • Leflon M, Hüsken A, Njontje C, Knightly S, Pendergast D, Pierre J, Renard M, Pinochet X (2009b) Stability of the cleistogamous trait during the flowering period of oilseed rape. Plant Breed. 129: 13–18 [CrossRef] [Google Scholar]
  • Lu BR (2003) Transgene containment by molecular means – is it possible and cost effective? Environ. Biosafety Res. 2: 3–8 [EDP Sciences] [PubMed] [Google Scholar]
  • Lu BR (2008) Transgene escape from GM crops and potential biosafety consequences: An anvironmental perspective. Coll. Biosafety Reviews 4: 66–141 [Google Scholar]
  • Lu YH, Belcram H, Rouault P, Piel N, Lucas MO, Falentin C, Renard M, Chalhoub B, Delourme R (2008) Cloning of a cleistogamy gene Clg1 in oilseed rape (B. napus L). In 5th ISHS International Symposium on Brassicas, Programme and Abstract Book, Lillehammer, Norway [Google Scholar]
  • Luo K, Duan H, Zhao D, Zheng X, Deng W, Chen Y, Stewart Jr CN, McAvoy R, Jiang X, Wu Y, He A, Pei Y, Li Y (2007) ‘GM-gene-deletor’: Fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant Biotechnol. J. 5: 263–274 [CrossRef] [PubMed] [Google Scholar]
  • Marshall DR, Thomson NJ, Nichols GH, Patrick CM (1974) Effects of temperature and day length on cytoplasmic male sterility in Cotton (Gossypium). Aust. J. Agric. Res. 25: 443–450 [CrossRef] [Google Scholar]
  • Medgyesy P, Menczel L, Maliga P (1980) The use of cytoplasmic streptomycin resistance: chloroplast transfer from Nicotiana tabacum into Nicotiana sylvestris, and isolation of their somatic hybrids. Mol. Gen. Genet. 179: 693–698 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Medgyesy P, Páy A, Márton L (1986) Transmission of paternal chloroplasts in Nicotiana. Mol. Gen. Genet. 204: 195–198 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Miyashita K, Matsuda H, Ohara M, Misawa T, Shimamoto Y (1999) Flowering and fruiting dynamics of chasmogamous and cleistogamous flowers in wild and cultivated soybeans. Res. Bul. Univ. Farm 31: 41–48 [Google Scholar]
  • Mlynárová L, Conner A, Nap JP (2006) Directed microspore-specific recombination of transgenic alleles to prevent pollen-mediated transmission of transgenes. Plant Biotechnol. J. 4: 445–452 [CrossRef] [PubMed] [Google Scholar]
  • Munsch M, Camp KH, Stamp P, Weider C (2008) Modern maize hybrids can improve grain yield as plus-hybrids by the combined effects of cytoplasmic male sterility and allo-pollination. Maydica 53: 262–268 [Google Scholar]
  • Munsch M, Stamp P, Christov NK, Foueillassar XM, Hüsken A, Camp KH, Weider C (2010) Grain yield increase and pollen containment by Plus-Hybrids could improve acceptance of transgenic maize. Crop Sci. 50: 909–919 [CrossRef] [Google Scholar]
  • Murphy DJ (2007) Improving containment strategies in biopharming. Plant Biotechnol J. 5: 555–569 [CrossRef] [PubMed] [Google Scholar]
  • Nagao S, Takahashi M (1963) Trial construction of twelve linkage groups in Japanese rice. Genetical studies on rice plants. J. Fac. Agr. Hokkaido Univ. 53: 72–130 [Google Scholar]
  • Pelletier G, Budar F (2007) The molecular biology of cytoplasmically inherited male sterility and prospects for its engineering. Curr. Opin. Biotechnol. 18: 121–125 [CrossRef] [PubMed] [Google Scholar]
  • Perez-Prat E, van Lockeren Campagne MM (2002) Hybrid seed production and the challenge of propagating male-sterile plants. Trends Plant Sci. 7: 199–203 [CrossRef] [PubMed] [Google Scholar]
  • Peterson CE, Foskett RL (1953) Occurrence of pollen sterility in seed fields of Scott County Globe onions. Proc. Am. Soc. Hort. Sci. 62: 443–448 [Google Scholar]
  • Peterson G, Cunningham S, Deutsch L, Erikson J, Quinlan A, Raez-Luna E, Tinch R, Troell M, Woodburg P, Zens S (2000) The risks and benefits of genetically modified crops: a multidisciplinary perspective. Conserv. Ecol. 4: 13 [Google Scholar]
  • Quesada-Vargas T, Ruiz ON, Daniell H (2005) Characterization of heterologous multigene operons in transgenic chloroplasts. Plant Physiol. 138: 1746–1762 [CrossRef] [PubMed] [Google Scholar]
  • Ruf S, Karcher D, Bock R (2007) Determining the transgene containment level provided by chloroplast transformation. Proc. Natl. Acad. Sci. USA 104: 6998–7002 [CrossRef] [Google Scholar]
  • Ruiz O, Daniell H (2005) Cytoplasmic male sterility engineered via the plastid genome. Plant Physiol. 138: 1232–1246 [CrossRef] [PubMed] [Google Scholar]
  • Sarvella P (1966) Environmental influences on sterility in cytoplasmic male-sterile cottons. Crop Sci. 6: 361–364 [CrossRef] [Google Scholar]
  • Sawhney VK (2004) Photoperiod-sensitive male sterile mutant in tomato and its potential use in hybrid seed production. J. Hortic. Sci. Biotech. 79: 138–141 [Google Scholar]
  • Sheppard AE, Ayliffe MA, Blatch L, Day A, Delaney SK, Khairul-Fahmy N, Li Y, Madesis P, Pryor AJ, Timmis JN (2008) Transfer of plastid DNA to the nucleus is elevated during male gametogenesis in tobacco. Plant Phys. 148: 328–336 [CrossRef] [Google Scholar]
  • Stamp P, Chowchong S, Menzi M, Weingartner U, Kaeser O (2000) Increase in the yield of cytoplasmic male sterile maize revisited. Crop Sci. 40: 1586–1587 [CrossRef] [Google Scholar]
  • Stegemann S, Bock R (2006) Experimental reconstruction of functional gene transfer from the tobacco plastid genome to the nucleus. Plant Cell 18: 2869–2878 [CrossRef] [PubMed] [Google Scholar]
  • Svab Z, Maliga P (2007) Exceptional transmission of plastids and mitochondria from the transplastomic pollen parent and its impact on transgene containment. Proc. Natl. Acad. Sci. USA 104: 7003–7008 [CrossRef] [Google Scholar]
  • Testolin R, Cipriani G (1997) Paternal inheritance of chloroplast DNA and maternal inheritance of mitochondrial DNA in the genus Actinidia. Theor. Appl. Genet. 94: 897–903 [CrossRef] [Google Scholar]
  • Turuspekov Y, Honda I, Watanabe Y, Stein N, Komatsuda T (2009) An inverted and micro-colinear genomic regions of rice and barley carrying the cly1 gene for cleistogamy. Breed. Science 59: 657–663 [CrossRef] [Google Scholar]
  • Wang T, Li Y, Shi Y, Reboud X, Darmency H, Gressel J (2004) Low frequency transmission of a plastid-encoded trait in Setaria italica. Theor. Appl. Genet. 108: 315–320 [CrossRef] [PubMed] [Google Scholar]
  • Weingartner U, Kaeser O, Long M, Stamp P (2002) Combining cytoplasmic male sterility and xenia increases grain yield of maize hybrids. Crop Sci. 42: 1848–1856 [CrossRef] [Google Scholar]
  • Weider C, Stamp P, Christov N, Hüsken A, Foueillassar X, Camp KH, Munsch M (2009) Stability of cytoplasmic male sterility in maize under different environmental conditions. Crop Sci. 49: 77–84 [CrossRef] [Google Scholar]
  • Yoshida G, Itoh JI, Ohmori S, Miyoshi K, Horigome A, Uchida E, Kimizu M, Matsumura Y, Kusaba M, Satoh H, Nagato Y (2007) Superwoman1-cleistogamy, a hopeful allele for gene containment in GM-rice. Plant Biotechnol. J. 5: 1–12 [CrossRef] [Google Scholar]