Open Access
Environ. Biosafety Res.
Volume 9, Number 1, January-March 2010
Page(s) 41 - 57
Section Regular articles
Published online 22 October 2010
  • Aikio S, Valosaari KR, Kaitala V (2008) Mating preference in the invasion of growth enhanced fish. Oikos 117: 406–414 [CrossRef] [Google Scholar]
  • Andersson M (1994) Sexual Selection. Princeton University Press, Princeton [Google Scholar]
  • Aqua Bounty Technologies (2010) Interim results for the six months ended 30 June, 2010. (Accessed September 21, 2010) [Google Scholar]
  • Bessey C, Devlin RH, Liley NR, Biagi CA (2004) Reproductive performance of growth-enhanced transgenic coho salmon. Trans. Am. Fish. Soc. 133: 1205–1220 [CrossRef] [Google Scholar]
  • Chan W-K, Devlin RH (1993) Polymerase chain reaction amplification and functional characterization of sockeye salmon histone H3, metallothionein-B, and protamine promoters. Mol. Mar. Biol. Biotech. 2: 308–318 [Google Scholar]
  • Cummings C, Alexander H, Snow A, Rieseberg L, Kim M, Culley T (2002) Fecundity selection in a sunflower crop-wild study: Can ecological data predict crop allele changes? Ecol. Appl. 12: 1661–1671 [Google Scholar]
  • Devlin RH (1993) Sequence of sockeye salmon type 1 and 2 growth hormone genes and the relationship of rainbow trout with Atlantic and Pacific salmon. Can. J. Fish. Aquat. Sci. 50: 1738–1748 [CrossRef] [Google Scholar]
  • Devlin RH, Yesaki TY, Biagi CA, Donaldson EM, Swanson P, Chan W-K (1994) Extraordinary salmon growth. Nature 371: 209–210 [CrossRef] [Google Scholar]
  • Devlin RH, Biagi CA, Yesaki TY, Smailus DE, Byatt JC (2001) Growth of domesticated transgenic fish. Nature 409: 781–782 [CrossRef] [PubMed] [Google Scholar]
  • Devlin RH, Sundström LF, Muir WM (2006) Interface of biotechnology and ecology for environmental risk assessments of transgenic fish. Trends Biotechnol. 24: 89–97 [CrossRef] [PubMed] [Google Scholar]
  • Devlin RH, Sundström LF, Johnsson JI, Fleming IA, Hayes KR, Ojwang WO, Bambaradeniya C, Zakaria-Ismail M (2007) Assessing ecological effects of transgenic fish prior to entry into nature. In Kapuscinski AR, Hayes KR, Li S, Dana G, eds, Environmental Risk Assessment of Genetically Modified Organisms, Volume 3: Methodologies for Transgenic Fish, CAB International, Oxfordshire, UK, pp 151–187 [Google Scholar]
  • Fleming IA, Hindar K, Mjolnerod IB, Jonsson B, Balstad T, Lamberg A (2000) Lifetime success and interactions of farm salmon invading a native population. P. Roy. Soc. B - Biol. Sci. 267: 1517–1523 [Google Scholar]
  • Food and Drug Administration (2010) Veterinary Medicine Advisory Committee; notice of meeting. August 26, Federal Register 75: 52605 [Google Scholar]
  • Guthrie DM, Muntz WRA (1993) Role of vision in fish behaviour. In Pitcher TJ, ed, The behaviour of Teleost fishes, Chapman & Hall, London, pp 89–121 [Google Scholar]
  • Hartl DL, Clark AG (1997) Principles of Population Genetics. Sinauer, Sunderland, MA [Google Scholar]
  • Hedrick PW (2001) Invasion of transgenes from salmon or other genetically modified organisms into natural populations. Can. J. Fish. Aquat. Sci. 58: 841–844 [CrossRef] [Google Scholar]
  • Hill WG (1971) Design and efficiency of selection experiments for estimating genetic parameters. Biometrics 27: 293–311 [CrossRef] [PubMed] [Google Scholar]
  • Hindar K, Ryman N, Utter F (1991) Genetic effects of cultured fish on natural fish populations. Can. J. Fish. Aquat. Sci. 48: 945–957 [CrossRef] [Google Scholar]
  • Howard RD, Martens RS, Innis SA, Drnevich JM, Hale J (1998) Mate choice and mate competition influence male body size in Japanese medaka. Anim. Behav. 55: 1151–1163 [CrossRef] [PubMed] [Google Scholar]
  • Howard RD, DeWoody JA, Muir WM (2004) Transgenic male mating advantage provides opportunity for Trojan gene effect in a fish. P. Natl. Acad. Sci. 101: 2934–2938 [CrossRef] [Google Scholar]
  • Iwamatsu T, Onitake K, Yoshimoto Y, Hiramoto Y (1991) Time sequence of early events in fertilization in the medaka egg. Dev. Growth Differ. 33: 479–490 [CrossRef] [Google Scholar]
  • Jiménez LV (2000) Estimation of fitness components in transgenic Japanese medaka to assess environmental risk in genetically modified organisms. Ph.D. thesis, Purdue University, West Lafayette, Indiana [Google Scholar]
  • Jobling M (1995) Environmental Biology of Fishes. Chapman & Hall, London [Google Scholar]
  • Johnsson JI, Petersson E, Jönsson E, Björnsson BT, Järvi T (1996) Domestication and growth hormone alter antipredator behaviour and growth patterns in juvenile brown trout, Salmo trutta. Can. J. Fish. Aquat. Sci. 53: 1546–1554 [CrossRef] [Google Scholar]
  • Johnsson JI, Petersson E, Jönsson E, Järvi T, Björnsson BT (1999) Growth hormone-induced effects on mortality, energy status and growth: a field study on brown trout (Salmo trutta). Funct. Ecol. 13: 514–522 [CrossRef] [Google Scholar]
  • Jönsson E, Johnsson JI, Björnsson BT (1996) Growth hormone increases predation exposure of rainbow trout. P. Roy. Soc. B - Biol. Sci. 263: 647–651 [CrossRef] [Google Scholar]
  • Kapuscinski AR, Hard JJ, Paulson KM, Neira R, Ponniah A, Kamonrat W, Mwanja W, Fleming IA, Gallardo J, Devlin RH, Trisak J (2007) Approaches to assessing gene flow. In Kapuscinski AR, Hayes KR, Li S, Dana G, eds, Environmental Risk Assessment of Genetically Modified Organisms, Volume 3: Methodologies for Transgenic Fish, CAB International, Oxfordshire, UK, pp 112–150 [Google Scholar]
  • Kent ML, Whipps CM, Matthews JL, Florio D, Watral V, Bishop-Stewart JK, Poort M, Bermudez L (2004) Mycobacteriosis in zebrafish (Danio rerio) research facilities. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 138: 383–390 [CrossRef] [PubMed] [Google Scholar]
  • Kimura M, Ohta T (1969) The average number of generations until extinction of an individual mutant gene in a finite population. Genetics 63: 701–709 [PubMed] [Google Scholar]
  • Kruer TL, Peck SL, Hostetler HA, Devlin RH, Muir WM (2002) Efficacy of the salmon metallothionein promoter driving expression of the Pacific salmon growth hormone gene (pOnMTGH1) for growth promotion in Japanese medaka (Oryzias latipes). Trans. Res. 11: 83 [abstract] [Google Scholar]
  • McGinnity P, Prodöhl P, Ferguson A, Hynes R, Maoiléidigh N, Baker N, Cotter D, O’Hea B, Cooke D, Rogan G (2003) Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. P. Roy. Soc. B - Biol. Sci. 270: 2443–2450 [Google Scholar]
  • Miller LM, Kapuscinski AR (1996) Microsatellite DNA markers reveal new levels of genetic variation in northern pike. T. Am. Fish. Soc. 125: 971–977 [CrossRef] [Google Scholar]
  • Muir WM, Howard RD (1999) Possible ecological risks of transgenic organism release when transgenes affect mating success: sexual selection and the Trojan gene hypothesis. P. Natl. Acad. Sci. 96: 13853–13856 [CrossRef] [Google Scholar]
  • Muir WM, Howard RD (2001) Fitness components and ecological risk of transgenic release: a model using Japanese medaka (Oryzias latipes). Am. Nat. 158: 1–16 [CrossRef] [PubMed] [Google Scholar]
  • National Research Council (2002) Animal Biotechnology: Science-Based Concerns. National Academies Press, Washington, DC [Google Scholar]
  • National Research Council (2004) Biological Confinement of Genetically Engineered Organisms. National Academies Press, Washington, DC [Google Scholar]
  • National Research Council (2008) Genetically Engineered Organisms, Wildlife, and Habitat: A Workshop Summary. National Academy of Sciences, Washington, DC [Google Scholar]
  • Naylor RL, Hindar K, Fleming IA, Goldburg RJ, Williams S, Volpe J, Whoriskey FG, Eagle J, Kelso DDT, Mangel M (2005) Fugitive salmon: assessing the risks of escaped fish from net-pen aquaculture. BioScience 55: 427–437 [CrossRef] [Google Scholar]
  • Ozato K, Kondoh H, Inohara H, Iwamatsu T, Wakamatsu Y, Okada TS (1986) Production of transgenic fish: introduction and expression of chicken ffi-crystallin gene in medaka embryos. Cell Differ. Dev. 19: 237–244 [CrossRef] [Google Scholar]
  • R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing. [Google Scholar]
  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE (2001) The population biology of invasive species. Annu. Rev. Ecol. Syst. 32: 305–332 [Google Scholar]
  • Sarkar D (2008) lattice: Lattice Graphics. R package version 0.17–17 [Google Scholar]
  • Shima A, Mitani H (2004) Medaka as a research organism: past, present and future. Mech. Develop. 121: 599–604 [CrossRef] [Google Scholar]
  • Sundström LF, Devlin RH, Johnsson JI, Biagi CA (2003) Vertical position reflects increased feeding motivation in growth hormone transgenic coho salmon (Oncorhynchus kisutch). Ethology 109: 701–712 [CrossRef] [Google Scholar]
  • Uematsu K (1990) An analysis of sufficient stimuli for the oviposition in the medaka Oryzias latipes. Journal of the Faculty of Applied Biological Science, Hiroshima University 29: 109–116 [Google Scholar]
  • Vila-Gispert A, Alcaraz C, Garcìa-Berthou E (2005) Life-history traits of invasive fish in small Mediterranean streams. Biol. Invasions 7: 107–116 [CrossRef] [Google Scholar]
  • Whipps CM, Dougan ST, Kent ML (2007) Mycobacterium haemophilum infections of zebrafish (Danio rerio) in research facilities. FEMS Microbiol. Lett. 270: 21–26 [CrossRef] [PubMed] [Google Scholar]
  • Wittbrodt J, Shima A, Schartl M (2002) Medaka – a model organism from the Far East. Nat. Rev. Genet. 3: 53–64 [CrossRef] [PubMed] [Google Scholar]
  • Yamamoto T (1975) Medaka (killifish): biology and strains. Keigaku, Tokyo [Google Scholar]