Free Access
Issue |
Environ. Biosafety Res.
Volume 9, Number 4, October-December 2010
|
|
---|---|---|
Page(s) | 181 - 198 | |
Section | Research report | |
DOI | https://doi.org/10.1051/ebr/2011109 | |
Published online | 15 November 2011 |
- Andow DA (2011) Assessing unintended effects of GM plants on biological species. J. Verbr. Lebensm. 6 (Suppl 1): S119–S124 [CrossRef] [Google Scholar]
- Andow DA, Hilbeck A (2004) Science-based risk assessment for nontarget effects of transgenic crops. Bioscience 54: 637–649 [CrossRef] [Google Scholar]
- Andow DA, Hilbeck A, Nguyen Van Tuat (2008) Environmental Risk Assessment of Genetically Modified Organisms. Volume 4. Challenges and opportunities with Bt cotton in Vietnam. Oxford. CABI International [Google Scholar]
- Anon (2005a) B/BE/07/V2Belgian Biosafety Server [Google Scholar]
- Anon (2005b) Land use by farm type. Ministry of Agriculture and Forestry. http://www.maf.govt.nz/statistics/land-use/ [Google Scholar]
- Anon (2007) Notification report, B/BE/07/VE, 30/11/2007. European Commission Joint Research Centre, Institute for Health and Consumer Protection. http://gmoinfo.jrc.ec.europa.eu/gmp_ report.aspx?CurNot=B/BE/07/V2 [Google Scholar]
- Anon (2008) Advice of the Belgian Biosafety Advisory Council on the notification of B/BE/07/V2 of the VIB, Flanders Institute of Biotechnology, for deliberate release in the environment of genetically modified poplars with an altered wood composition for research and development. WIV-ISP/BAC/2008_733. 25/04/2008. http://www.bio-council.be/bac_advices.html; http://www.bio-council.be/docs/BAC_2008_ 733.pdf [Google Scholar]
- Axelsson EP, Hjaltan J, Leroy CJ, Julkunen-Tiitto R, Wennstrom A, Pilate G (2010) Can leaf litter from genetically modified trees affect aquatic ecosystems? Ecosystems 13: 1049–1059 [CrossRef] [Google Scholar]
- Barraclough EI, Burgess EPJ, Philip BA, Wohlers MW, Malone LA (2009) Tri-trophic impacts of Bt-expressing transgenic pine on the parasitoid Meteorus pulchricornis (Hymenoptera: Braconidae) via its host Pseudocoremia suavis (Lepidoptera: Geometridae). Biol. Control 49: 192–199 [CrossRef] [Google Scholar]
- Barratt BIP, Todd JH, Burgess EPJ, Malone LA Developing biosafety risk hypotheses for invertebrates exposed to GM plants using conceptual food webs: a case study with elevated triacylglyceride levels in ryegrass. Environ. Biosafety Res., in press [Google Scholar]
- Benge J, Moller H, Logan D (2006) Cicada species in kiwifruit orchards. ARGOS Research Note [online] www.argos.org.nz [Google Scholar]
- Bishop-Hurley SL, Zabkiewicz RJ, Grace L, Gardner RC, Wagner A, Walter C (2001) Conifer genetic engineering: transgenic Pinus radiata (D. Don) and Picea abies (Karst) plants are resistant to the herbicide Buster. Plant Cell Rep. 20: 235–243 [CrossRef] [Google Scholar]
- Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu. Rev. Plant Biol. 54: 519–546 [CrossRef] [PubMed] [Google Scholar]
- Bradley KL, Hancock JE, Giardina CP, Pregitzer KS (2007) Soil microbial community responses to altered lignin biosynthesis in Populus tremuloides vary among three distinct soils. Plant Soil 294: 185–201 [CrossRef] [Google Scholar]
- Chuchou M, Grace LJ (1983) Characterization and identification of mycorrhizas of radiata pine in New Zealand. Australian Forest Research 13: 121–132 [Google Scholar]
- Chuchou M, Grace LJ (1988) Mycorrhizal fungi of radiata pine in different forests of the North and South Islands in New Zealand. Soil Biol. Biochem. 20: 883–886 [Google Scholar]
- Chuchou M, Grace LJ (1990) Mycorrhizal fungi of radiata pine seedlings in nurseries and trees in forests. Soil Biol. Biochem. 22: 959–966 [Google Scholar]
- Clissold FJ, Sanson GD, Read J, Simpson SJ (2009) Gross vs. net income: How plant toughness affects performance of an insect herbivore. Ecology 90: 3393–3405 [CrossRef] [PubMed] [Google Scholar]
- Colbourne R, Kleinpaste R (1983) A banding study of North Island brown kiwis in an exotic forest. Notornis 30: 109–124 [Google Scholar]
- Cowley DR (1978) Studies on the larvae of New Zealand Trichoptera. N. Z. J. Zool. 5: 639–750 [CrossRef] [Google Scholar]
- Crane PE, Hopkins AJM, Dick MA, Bulman LS (2009) Behaviour of Neonectria fuckeliana causing a pine canker disease in New Zealand. Can. J. For. Res.-Rev. Can. Rech. For. 39: 2119–2128 [CrossRef] [Google Scholar]
- Dennis J, Kaplan I, Chu A (2005) Production and markets. In Colley M, ed, New Zealand Institute of Forestry Inc. Forestry Handbook. Tauranga, New Zealand, Design & Print Management Ltd, pp 190–192 [Google Scholar]
- ERMANZ, Environmental Risk Management Authority New Zealand (2010) Application for field testing genetically modified organisms in containment under section 40(1)(c) of the HSNO Act 1996. In: New Zealand Forest Research Institute Ltd taS (Ed.) Field Test in Containment Genetically Modified Pine Trees. Wellington, New Zealand, ERMANZ. pp. 57 [Google Scholar]
- EFSA, European Food Safety Authority (2010a) EFSA Panel on Genetically Modified Organisms (GMO); Guidance on the environmental risk assessment of genetically modified plants. EFSA J. 8(11):1879. [111 pp.]. doi:10.2903/j.efsa.2010.1879 [Google Scholar]
- EFSA, European Food Safety Authority (2010b) EFSA Panel on Genetically Modified Organisms (GMO); Scientific opinion on the environmental risk assessment of genetically modified plants. EFSA J. 8(11):1877 [72 pp.]. doi:10.2903/j.efsa.2010.1877 [Google Scholar]
- Ferraz A, Rodriguez J, Freer J, Baeza J (2001) Biodegradation of Pinus radiata softwood by white- and brown-rot fungi. World J. Microbiol. Biotechnol. 17: 31–34 [Google Scholar]
- Ferreira SA, Pitz KY, Manshardt R, Zee F, Fitch M, Gonsalves D (2002) Virus coat protein transgenic papaya provides practical control of Papaya ringspot virus in Hawaii. Plant Dis. 86: 101–105 [CrossRef] [Google Scholar]
- Ferrer M, Beloqui A, Golyshin PN (2010) Screening metagenomic libraries for laccase activities. Methods Mol. Biol. 668: 189–202 [CrossRef] [PubMed] [Google Scholar]
- Find JI, Charity JA, Grace LJ, Kristensen MMMH, Krogstrup P, Walter C (2005) Stable genetic transformation of embryogenic cultures of Abies nordmanniana (Nordmann fir) and regeneration of transgenic plants. In Vitro Cell. Dev. Biol.Plant 41: 725–730 [CrossRef] [Google Scholar]
- Franich RA, Carson MJ, Carson SD (1986) Synthesis and accumulation of benzoic acid in Pinus radiata needles in response to tissue injury by dothistromin, and correlation with resistance of Pinus radiata families to Dothistroma pini. Physiol. Mol. Plant Pathol. 28: 267–286 [CrossRef] [Google Scholar]
- Garrett LG, Kimberley MO, Oliver GR, Pearce SH, Paul TSH (2010) Decomposition of woody debris in managed Pinus radiata plantations in New Zealand. For. Ecol. Manag. 260: 1389–1398 [CrossRef] [Google Scholar]
- Geib SM, Filley TR, Hatcher PG, Hoover K, Carlson JE, Jimenez-Gasco MD, Nakagawa-Izumi A, Sleighter RL, Tien M (2008) Lignin degradation in wood-feeding insects. Proc. Natl. Acad. Sci. U. S. A. 105: 12932–12937 [CrossRef] [PubMed] [Google Scholar]
- Grabber JH, Schatz PF, Kim H, Lu F, Ralph J (2010) Identifying new lignin bioengineering targets: 1. Monolignol-substitute impacts on lignin formation and cell wall fermentability. BMC Plant Biology 10: 114 [CrossRef] [PubMed] [Google Scholar]
- Grace LJ, Charity JA, Gresham B, Kay N, Walter C (2005) Insect-resistant transgenic Pinus radiata. Plant Cell Rep. 24: 103–111 [CrossRef] [PubMed] [Google Scholar]
- Hancock JE, Bradley KL, Giardina CP, Pregitzer KS (2008) The influence of soil type and altered lignin biosynthesis on the growth and above and belowground biomass allocation of Populus tremuloides. Plant Soil 308: 239–253 [CrossRef] [Google Scholar]
- Henault C, English LC, Halpin C, Andreux F, Hopkins DW (2006) Microbial community structure in soils with decomposing residues from plants with genetic modifications to lignin biosynthesis. FEMS Microbiol. Lett. 263: 68–75 [CrossRef] [PubMed] [Google Scholar]
- Hilbeck A, Andow DA (2004) Environmental Risk Assessment of Genetically Modified Organisms. Volume 1. A case study of Bt maize in Kenya. Oxford. CABI International [Google Scholar]
- Hilbeck A, Andow DA, Fontes EMG (2006) Environmental Risk Assessment of Genetically Modified Organisms. Volume 2. Methodologies for assessing Bt cotton in Brazil. Oxford. CABI International [Google Scholar]
- Hitchmough R (comp.) (2002) New Zealand Threat Classification System lists – 2002. Threatened species occasional publication 23, Department of Conservation, Wellington, New Zealand [Google Scholar]
- Hood IA, Kimberley MO, Gardner JF (2009) Susceptibility to Armillaria novae-zelandiae among clones of Pinus radiata. For. Pathol. 39: 405–414 [CrossRef] [Google Scholar]
- Hotter GS (1997) Elicitor-induced oxidative burst and phenylpropanoid metabolism in Pinus radiata cell suspension cultures. Aust. J. Plant Physiol. 24: 797–804 [CrossRef] [Google Scholar]
- Huang DF, Zhang J, Song FP, Lang ZH (2007) Microbial control and biotechnology research on Bacillus thuringiensis in China. J. Invertebr. Pathol. 95: 175–180 [CrossRef] [PubMed] [Google Scholar]
- Huntley SK, Ellis D, Gilbert M, Chapple C, Mansfield SD (2003) Significant increases in pulping efficiency in C4H-F5H-transformed poplars: Improved chemical savings and reduced environmental toxins. J. Agric. Food Chem. 51: 6178–6183 [CrossRef] [PubMed] [Google Scholar]
- Johnson SN, Hallett PD, Gillespie TL, Halpin C (2010) Below-ground herbivory and root toughness: a potential model system using lignin-modified tobacco. Physiol. Entomol. 35: 186–191 [CrossRef] [Google Scholar]
- Kim KW, Lee IJ, Thoungchaleun V, Kim CS, Lee DK, Park EW (2009) Visualization of wound periderm and hyphal profiles in pine stems inoculated with the pitch canker fungus Fusarium circinatum. Microsc. Res. Tech. 72: 965–973 [CrossRef] [PubMed] [Google Scholar]
- Lahtinen M, Kruus K, Heinonen P, Sipila J (2009) On the reactions of two fungal laccases differing in their redox potential with lignin model compounds: products and their rate of formation. J Agric Food Chem 57: 8357–8365 [CrossRef] [PubMed] [Google Scholar]
- Levee V, Major I, Levasseur C, Tremblay L, MacKay J, Seguin A (2009) Expression profiling and functional analysis of Populus WRKY23 reveals a regulatory role in defense. New Phytol. 184: 48–70 [CrossRef] [PubMed] [Google Scholar]
- Lottmann J, O’Callaghan M, Baird D, Walter C (2010) Bacterial and fungal communities in the rhizosphere of field-grown genetically modified pine trees (Pinus radiata D.). Environ. Biosafety Res. 9: 25–40 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Miller D (1971) Common Insects in New Zealand. Wellington, A.H. & A.W. Reed Ltd [Google Scholar]
- Milligan RH (1978) Hylastes ater (Paykull) (Coleoptera: Scolytidae). Black pine bark beetle. New Zealand Forest Service, Forest and Timber Insects in New Zealand 29 [Google Scholar]
- Morgan FD (1959) The ecology and external morphology of Stolotermes ruficeps Brauer (Isoptera: Hodotermitidae). Trans. Roy. Soc. N. Z. 86: 155–195 [Google Scholar]
- Nanayakkara B, Manley-Harris M, Suckling ID, Donaldson LA (2009) Quantitative chemical indicators to assess the gradation of compression wood. Holzforschung 63: 431–439 [CrossRef] [Google Scholar]
- Parfitt RL, Newman RH (2000) 13C NMR study of pine needle decomposition. Plant Soil 219: 273–278 [CrossRef] [Google Scholar]
- Parkinson B (2007) A photographic guide to the insects of New Zealand. Auckland, New Holland Publishers (NZ) Ltd [Google Scholar]
- Pawson SM, Ecroyd CE, Seaton R, Shaw WB, Brockerhoff EG (2010) New Zealand’s exotic plantation forests as habitats for threatened indigenous species. N. Z. J. Ecol. 34: 342–355 [Google Scholar]
- Peeters PJ, Sanson G, Read J (2007) Leaf biomechanical properties and the densities of herbivorous insect guilds. Funct. Ecol. 21: 246–255 [CrossRef] [Google Scholar]
- Pilate G, Guiney E, Holt K, Petit-Conil M, Lapierre C, Leple JC, Pollet B, Mila I, Webster EA, Marstorp HG, Hopkins DW, Jouanin L, Boerjan W, Schuch W, Cornu D, Halpin C (2002) Field and pulping performances of transgenic trees with altered lignification. Nat. Biotechnol. 20: 607–612 [CrossRef] [PubMed] [Google Scholar]
- Prins RA, Kreulen DA (1991) Comparative aspects of plant-cell wall digestion in insects. Anim. Feed Sci. Tech. 32: 101–118 [CrossRef] [Google Scholar]
- Punelli F, Reverberi M, Porretta D, Nogarotto S, Fabbri AA, Fanelli C, Urbanelli S (2009) Molecular characterization and enzymatic activity of laccases in two Pleurotus spp. with different pathogenic behaviour. Mycol. Res. 113: 381–387 [CrossRef] [PubMed] [Google Scholar]
- Raybould A, Caron-Lormier G, Bohan D (2011) Derivation and interpretation of hazrd quotients to assess ecological risks from the cultivation of insect-resistant transgenic crops. J. Agric. Food Chem. 59: 5877–5885 [CrossRef] [PubMed] [Google Scholar]
- Rogers DJ, Lewthwaite SE, Dentener PR (2002) Rearing huhu beetle larvae, Prionoplus reticularis (Coleoptera: Cerambycidae) on artificial diet. N. Z. J. Zool. 29: 303–310 [CrossRef] [Google Scholar]
- Romeis J, Hellmich RL, Candolfi MP, Carstens K, De Schrijver A,Gatehouse AMR, Herman RA, Huesing JE, McLean MA, Raybould A, Shelton AM, Waggoner A (2011) Recommendations for the design of laboratory studies on non-target arthropods for risk assessment of genetically engineered plants. Transgenic Res. 20: 1–22 [CrossRef] [PubMed] [Google Scholar]
- Schirp A, Farrell RL, Kreber B (2003) Effects of New Zealand sapstaining fungi on structural integrity of unseasoned radiata pine. Holz Als Roh-und Werkst. 61: 369–376 [CrossRef] [Google Scholar]
- Schnitzler F-R, Burgess EPJ, Kean AM, Philip BA, Barraclough EI, Malone LA, Walter C (2010) No unintended impacts of transgenic pine (Pinus radiata) trees on above-ground invertebrate communities. Environ. Entomol. 39: 1359–1368 [CrossRef] [PubMed] [Google Scholar]
- Schwelm A, Barron NJ, Baker J, Dick M, Long PG, Zhang S, Bradshaw RE (2009) Dothistromin toxin is not required for dothistroma needle blight in Pinus radiata. Plant Pathol. 58: 293–304 [CrossRef] [Google Scholar]
- Seppanen SK, Pasonen HL, Vauramo S, Vahala J, Toikka M, Kilpelainen I, Setala H, Teeri TH, Timonen S, Pappinen A (2007) Decomposition of the leaf litter and mycorrhiza forming ability of silver birch with a genetically modified lignin biosynthesis pathway. Appl. Soil Ecol. 36: 100–106 [CrossRef] [Google Scholar]
- Stoytchev I, Nerud F (2000) Ligninolytic enzyme complex of Armillaria spp. Folia Microbiol. 45: 248–250 [CrossRef] [Google Scholar]
- Sutela S, Niemi K, Edesi J, Laakso T, Saranpaa P, Vuosku J, Makela R, Tiimonen H, Chiang VL, Koskimaki J, Suorsa M, Julkunen-Tiitto R, Haggman H (2009) Phenolic compounds in ectomycorrhizal interaction of lignin modified silver birch. BMC Plant Biol. 9: 124 [CrossRef] [PubMed] [Google Scholar]
- Tiimonen H, Aronen T, Laakso T, Saranpaa P, Chiang V, Haggman H, Niemi K (2008) Paxillus involutus forms an ectomycorrhizal symbiosis and enhances survival of PtCOMT-modified Betula pendula in vitro. Silvae Genet. 57: 235–242 [Google Scholar]
- Tiimonen H, Aronen T, Laakso T, Saranpaa P, Chiang V, Ylioja T, Roininen H, Haggman H (2005) Does lignin modification affect feeding preference or growth performance of insect herbivores in transgenic silver birch (Betula pendula Roth)? Planta 222: 699–708 [CrossRef] [PubMed] [Google Scholar]
- Todd JH, Ramankutty P, Barraclough EI, Malone LA (2008) A screening method for prioritizing non-target invertebrates for improved biosafety testing of transgenic crops. Environ. Biosafety Res. 7: 35–56 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Tronchet M, Balague C, Kroj T, Jouanin L, Roby D (2010) Cinnamyl alcohol dehydrogenases-C and D, key enzymes in lignin biosynthesis, play an essential role in disease resistance in Arabidopsis. Mol. Plant Pathol. 11: 83–92 [CrossRef] [PubMed] [Google Scholar]
- Uprichard JM (1991) Chemistry of Wood and Bark. In Kininmonth JA, Whitehouse LJ, eds, Properties and Use of Radiata Pine, Vol 1 - Wood Properties. Rotorua, New Zealand, New Zealand Ministry of Forestry, Forest Research Institute [Google Scholar]
- USDA (2010) Permit applications 08–011–106rm and 08–014–101rm received from ArborGen LLC. Field testing of genetically engineered Eucalyptus grandis X Eucalyptus urophylla. Final Environmental Assessment. April 2010 [Google Scholar]
- USEPA, United States Environmental Protection Agency (1998) Guidelines for Ecological Risk Assessment. EPA/630/R095/002F. http://cfpub.epa.gov/ncea/raf/recordisplay.cfm?deid=12460 [Google Scholar]
- Valenzuela S, Balocchi C, Rodriguez J (2006) Transgenic trees and forestry biosafety. Electron. J. Biotechnol. 9: 335–339 [CrossRef] [Google Scholar]
- Vanholme R, Morreel K, Ralph J, Boerjan W (2008) Lignin engineering. Curr. Opin. Plant Biol. 11: 278–285 [CrossRef] [PubMed] [Google Scholar]
- Wagner A, Donaldson L, Kim H, Phillips L, Flint H, Steward D, Torr K, Koch G, Schmitt U, Ralph J (2009) Suppression of 4-coumarate-CoA ligase in the coniferous gymnosperm Pinus radiata. Plant Physiol. 149: 370–383 [CrossRef] [PubMed] [Google Scholar]
- Wagner A, Ralph J, Akiyama T, Flint H, Phillips L, Torr K, Nanayakkara B, Kiri LT (2007) Exploring lignification in conifers by silencing hydroxycinnamoyl-CoA : shikimate hydroxycinnamoyltransferase in Pinus radiata. Proc. Natl. Acad. Sci. U. S. A. 104: 11856–11861 [CrossRef] [PubMed] [Google Scholar]
- Walbert K, Ramsfield TD, Ridgway HJ, Jones EE (2010) Ectomycorrhizal species associated with Pinus radiata in New Zealand including novel associations determined by molecular analysis. Mycorrhiza 20: 209–215 [CrossRef] [PubMed] [Google Scholar]
- Walter C, Fladung M, Boerjan W (2010) The 20-year environmental safety record of GE trees. Nat. Biotechnol. 28: 656–658 [CrossRef] [PubMed] [Google Scholar]
- Wang Q, Shi GL, Song D, Rogers DJ, Davis LK, Chen XN (2002) Development, survival, body weight, longevity, and reproductive potential of Oemona hirta (Coleoptera : Cerambycidae) under different rearing conditions. J. Econ. Entomol. 95: 563–569 [CrossRef] [PubMed] [Google Scholar]
- Watt JC (1982) New Zealand beetles. N. Z. Entomol. 7: 213–221 [CrossRef] [Google Scholar]
- Wilkinson M, Tepfer M (2009) Fitness and beyond: Preparing for the arrival of GM crops with ecologically important novel characters. Environ. Biosafety Res. 8: 1–14 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- Williams HW (1971) Dictionary of the Maori Language, Seventh Edition. Wellington, Legislation Direct [Google Scholar]
- Zhang Z, Van Epenhuijsen CW,Brash D, Hosking GP (2004) Phosphine as a fumigant to control Hylastes ater and Arhopalus ferus, pests of export logs. N. Z. Plant Protection 57: 257–259 [Google Scholar]