Open Access
Issue |
Environ. Biosafety Res.
Volume 8, Number 3, July-September 2009
|
|
---|---|---|
Page(s) | 161 - 181 | |
Section | Symposium | |
DOI | https://doi.org/10.1051/ebr/2009017 | |
Published online | 10 December 2009 |
- Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232: 738-743 [CrossRef] [PubMed] [Google Scholar]
- Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Ann. Rev. Plant Biol. 57: 234-266 [Google Scholar]
- Balázs E, Petrik K, Gell G, Divéki Z (2008) Recombination studies of maize dwarf mosaic potyvirus (MDMV) as an important factor for risk assessment in maize plants. 10th International Symposium on the Biosafety of Genetically Modified Organisms, Wellington, November 16-21, 2008, Symposium Handbook, 128 p [Google Scholar]
- Baumgarte S, Tebbe CC (2005) Field studies on the environmental fate of the Cry1Ab Bt toxin produced by transgenic maize (MON810) and its effect on bacterial communities in the maize rhizosphere. Mol. Ecol. 14: 2539-2551 [CrossRef] [PubMed] [Google Scholar]
- Birch ANE, Griffiths BS, Caul S, Thompson J, Heckman LH, Krogh PH, Cortet J (2007) The role of laboratory, glasshouse and field scale experiments in understanding the interactions between genetically modified crops and soil ecosystems: A review of the ECOGEN project. Pedobiologia 51: 251-260 [CrossRef] [Google Scholar]
- Brimecombe MJ, De Leij FA, Lynch JM (2001) The effect of root exudates on rhizosphere microbial populations. In Pinton R, Varanini Z, Nannipieri P, eds, The rhizosphere, Marcel Dekker, Inc., New York, pp 95-140 [Google Scholar]
- Broeckling CD, Broz AK, Bergelson J, Manter DK, Vivanco JM (2008) Root exudates regulate soil fungal community composition and diversity. Appl. Environ. Microbiol. 74: 738-744 [CrossRef] [PubMed] [Google Scholar]
- Christeller JT, Markwick NP, Poulton J, O'Callaghan M (2006) Binding of an insecticidal transgene product to soil: biological activity of soil-bound avidin and the effects of time and microbial activity. Soil Biol. Biochem. 38: 2043-2052 [CrossRef] [Google Scholar]
- Demanèche S, Sanguin H, Poté J, Navarro E, Bernillon D, Mavingui P, Wildi W, Vogel TM, Simonet P (2008) Antibiotic resistance soil bacteria in transgenic plant fields. Proc. Natl. Acad. Sci. USA 105: 3957-3962 [CrossRef] [Google Scholar]
- Dunfield KE, Germida JJ (2003) Seasonal changes in the rhizosphere microbial communities associated with field grown genetically modified canola (Brassica napus). Appl. Environ. Microbiol. 69: 3710-3718 [CrossRef] [PubMed] [Google Scholar]
- Dunfield KE, Germida JJ (2004) Impact of genetically modified crops on soil and plant associated microbial communities. J. Env. Qual. 33: 806-815 [Google Scholar]
- EFSA (2009) Guidance for the risk assessment of genetically modified plants used for non-food or non-feed purposes. EFSA 2009, Parma [Google Scholar]
- Godfree RC, Thrall PH, Young AG (2007) Enemy release after introduction of disease-resistant genotypes into plant-pathogen systems. Proc. Natl. Acad. Sci. USA 104: 2756-2760 [CrossRef] [Google Scholar]
- Gonsalves D (2003) Commercialization of transgenic papaya: Weighing benefits and potential risks. In Lelley T, Balázs E, Tepfer M, eds, Ecological Impact of GMO Dissemination in Agro-ecosystems, Facultas Verlags Wien, pp 131-137 [Google Scholar]
- Gulden RH, Lerat S, Blackshaw RE, Powell JR, Levy-Booth D, Dunfield KE, Trevors JT, Pauls KP, Klironomos JN, Swanton CJ (2008) Factors affecting the presence and persistence of plant DNA in the soil environment in corn and soybean rotations. Weed Sci. 56: 767-774 [Google Scholar]
- Head G, Surber JB, Watson JA, Martin JW, Duan JJ (2002) No detection of Cry1Ac protein in soil after multiple years of transgenic Bt cotton (Bollgard) use. Environ. Entomol. 31: 30-36 [Google Scholar]
- Icoz I, Stotzky G (2008) Fate and effects of insect-resistant Bt crops in soil ecosystems. Soil Biol. Biochem. 40: 559-586 [CrossRef] [Google Scholar]
- Kowalchuk GA, Bruinsma M, van Veen JA (2003) Assessing responses of soil microorganisms to GM plants. Trends Ecol. Evol. 18: 403-410 [CrossRef] [Google Scholar]
- Levy-Booth DJ, Campbell RG, Gulden RH, Hart MH, Powell JR, Klironomos JN, Pauls KP, Swanton CL, Trevors JT, Dunfield KE (2007) Cycling of extracellular DNA in the soil environment. Soil Biol. Biochem. 39: 2977-2991 [CrossRef] [Google Scholar]
- Levy-Booth DJ, Campbell RG, Gulden RH, Hart MH, Powell JR, Klironomos JN, Pauls KP, Swanton CL, Trevors JT, Dunfield KE (2008) Real-time polymerase chain reaction monitoring of recombinant DNA entry into soil from decomposing Roundup Ready® leaf biomass. JAFC 56: 6339-6347 [CrossRef] [Google Scholar]
- Marvier M, McCreedy C, Regetz J, Karieva P (2007) A meta-analysis of effects of Bt cotton and maize on non target invertebrates. Science 316: 1475-1477 [CrossRef] [PubMed] [Google Scholar]
- Neumann G, Römheld V (2001) The release of root exudates as affected by the plant's physiological status. In Pinton R, Varanini Z, Nannipieri P, eds, The rhizosphere, Marcel Dekker, Inc., New York, pp 41-93 [Google Scholar]
- Nickson T (2008) Planning environmental risk assessment for genetically modified crops: Problem formulation for stress-tolerant crops. Plant Physiol. 147: 494-502 [CrossRef] [PubMed] [Google Scholar]
- O'Callaghan M, Glare TR, Burgess EPJ, Malone LA (2005) Effects of plants genetically modified for insect resistance on non-target organisms. Ann. Rev. Entomol. 50: 271-292 [CrossRef] [PubMed] [Google Scholar]
- O'Callaghan M, Brownbridge M, Stilwell W, Gerard EM, Burgess EPJ, Barraclough EI, Christeller JT (2007) Effects of tobacco genetically modified to express the protease inhibitor BSTI on non-target soil organisms. Environ. Biosafety Res. 6: 183-195 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
- O'Callaghan M, Gerard EM, Bell NL, Waipara NW, Aalders LT, Baird DB, Conner AJ (2008) Bacterial and fungal communities associated with potatoes genetically modified to express the antimicrobial peptide magainin. Soil Biol. Biochem. 40: 1446-1459 [CrossRef] [Google Scholar]
- Powell J, Levy-Booth D, Gulden R, Asbil WL, Campbell RG, Dunfield KE, Hamill AS, Hart M, Lerat S, Nurse RE, Pauls PP, Sikkema PH, Swanton CJ, Trevors J, Klironomos J (2009) Variety and management effects on soil food web dynamics and litter decomposition in a genetically-modified, herbicide-tolerant cropping system. J. Appl. Ecol. 46: 388-396 [CrossRef] [Google Scholar]
- Raaijmakers JM, Paulitz CT, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321: 341-361 [CrossRef] [Google Scholar]
- Raybould A (2007) Ecological versus ecotoxicological methods for assessing the environmental risks of transgenic crops. Plant Sci. 173: 589-602 [CrossRef] [Google Scholar]
- Singh BK, Milard P, Whitely AS, Murrell JC (2004) Unravelling rhizosphere-microbial interactions: opportunities and limitations. Trends Microbiol. 12: 386-393 [CrossRef] [PubMed] [Google Scholar]
- Sørensen J (1997) The rhizosphere as a habitat for soil microorganisms. In van Elsas JD, Trevors JT, Wellington EMH, eds, Modern soil microbiology, Marcel Dekker, Inc., New York, pp 21-45 [Google Scholar]
- Sweet JB (2006) Integrated Approaches to General Surveillance. Journal für Verbraucherschutz und Lebensmittelsicherheit (Journal of Consumer Protection and Food Safety) 1, Supplement 1: 49-50 [Google Scholar]
- Tapp H, Stotzky G (1995) Insecticidal activity of the toxins from Bacillus thuringiensis susbspecies kurstaki and tenebrionis adsorbed and bound on pure and soil clays. Appl. Environ. Microbiol. 61: 1786-1790 [PubMed] [Google Scholar]
- Tapp H, Stotzky G (1998) Persistence of the insecticidal toxin from Bacillus thuringiensis subsp. kurstaki in soil. Soil Biol. Biochem. 30: 471-476 [CrossRef] [Google Scholar]
- Tepfer M (2002) Risk assessment of virus-resistant transgenic plants. Ann. Rev. Phytopath. 40: 467-491 [Google Scholar]
- Tepfer M, Balázs E (eds) (1997) Virus-resistant Transgenic Plants: Potential Ecological Impact. Springer Verlag, Berlin-Heidelberg-New York [Google Scholar]
- Weinert N, Meincke R, Gottwald C, Heuer H, Gomes NC, Schloter M, Berg G, Smalla K (2009a) Rhizosphere communities of genetically modified zeaxanthin-accumulating potato plants and their parent cultivar differ less than those of different potato cultivars. Appl. Environ. Microbiol. 75: 3859-3865 [CrossRef] [PubMed] [Google Scholar]
- Weinert N, Meincke R, Gottwald C, Radl V, Dong X, Schloter M, Berg G, Smalla K (2009b) Effects of genetically modified potatoes with increased zeaxanthin content on the abundance and diversity of rhizobacteria with in vitro antagonistic activity do not exceed natural variability among cultivars. Plant Soil, DOI: 10.1007/s11104-009-0024-z [Google Scholar]
- Zwahlen C, Hilbeck A, Gugerli P, Nentwig W (2003) Degradation of the Cry1Ab protein within transgenic Bacillus thuringiensis corn tissue in the field. Mol. Ecol. 12: 765-775 [CrossRef] [PubMed] [Google Scholar]