Open Access
Issue
Environ. Biosafety Res.
Volume 8, Number 3, July-September 2009
Page(s) 123 - 131
Section Regular article
DOI https://doi.org/10.1051/ebr/2009013
Published online 07 October 2009
  • Angadi SV, Cutforth HW, McConkey BG, Gan Y (2003) Yield adjustement by canola grown at different plant populations under semi-arid conditions. Crop Sci. 43: 1358–1366 [CrossRef] [Google Scholar]
  • Becker HC, Damgaard C, Karlsson B (1992) Environmental variation for outcrossing rate in rapeseed (Brassica napus). Theor. Appl. Genet. 84: 303–306 [PubMed] [Google Scholar]
  • Beckie HJ, Hall LM (2008) Simple to complex: Modelling crop pollen-mediated gene flow. Plant Sci. 175: 615–628 [CrossRef] [Google Scholar]
  • Beckie HJ, Warwick SI, Nair H, Séguin-Swartz G (2003) Gene flow in commercial fields of herbicide-resistant canola (Brassica napus). Ecol. Appl. 13: 1276–1294 [CrossRef] [Google Scholar]
  • Beckie HJ, Harker KN, Hall LM, Warwick SI, Légère A, Sikkema PH, Clayton GW, Thomas AG, Leeson JY, Séguin-Swartz G, Simard M-J (2006) A decade of herbicide-resistant crops in Canada. Can. J. Plant Sci. 86: 1243–1264 [Google Scholar]
  • Canola Council of Canada (2008) Canola Growers Manual. http://www.canola-council.org/canola_growers_manual.aspx [Google Scholar]
  • Cuthbert JL, McVetty PBE (2001) Plot-to-plot, row-to-row and plant-to-plant outcrossing studies in oilseed rape. Can. J. Plant Sci. 81: 657–664 [Google Scholar]
  • Damgaard C, Loeschcke V (1994) Genotypic variation for reproductive characters, and the influence of pollen-ovule ratio on selfing rate in rape seed (Brassica napus). J. Evol. Biol. 7: 599–607 [CrossRef] [Google Scholar]
  • Della Porta G, Ederle D, Bucchini L, Prandi M, Verderio A, Pozzi C (2008) Maize pollen mediated gene flow in the Po valley (Italy): Source-recipient distance and effect of flowering time. Eur. J. Agron. 28: 255–265 [Google Scholar]
  • Fox GA (2003) Assortative mating and plant phenology: evolutionary and practical consequences. Evol. Ecol. Res. 5: 1–18 [PubMed] [Google Scholar]
  • Fox GA, Pickering CM (1997) Methods for estimating phenological assortative mating, with an application to Australian Ranunculus. Meeting of the Society for the Study of Evolution, Boulder, Colorado, USA, 12 p, available at http://chuma.cas.usf.edu/ gfox/papers/manual/ssepost.pdf [Google Scholar]
  • Friesen LF, Nelson AG, Van Acker RC (2003) Evidence of contamination of pedigreed canola (Brassica napus) seedlots in Western Canada with genetically engineered herbicide resistance traits. Agron. J. 95: 1342–1347 [Google Scholar]
  • Gulden RH, Shirtliffe SJ, Thomas AG (2003) Harvest losses of canola (Brassica napus) causes large seedbank inputs. Weed Sci. 51: 83–86 [CrossRef] [Google Scholar]
  • Hall L, Topinka K, Huffman J, Davis L, Good A (2000) Pollen flow between herbicide-resistant Brassica napus is the cause of multiple-resistant B. napus volunteers. Weed Sci. 48: 688–694 [CrossRef] [Google Scholar]
  • Hinata K, Konno N (1975) Number of pollen grains in Brassica and allied genera. Tohoku J. Agric. Res. 26: 117–124 [Google Scholar]
  • Hüsken A, Dietz-Pfeilstetter A (2007) Pollen-mediated intraspecific gene flow from herbicide resistant oilseed rape (Brassica napus L.). Transgenic Res. 16: 557–569 [CrossRef] [PubMed] [Google Scholar]
  • Ingram J (2000) The separation distances required to ensure cross-pollination is below specified limits in non-seed crops of sugarbeet, maize and oilseed rape. Plant Var. Seeds 13: 181–199 [Google Scholar]
  • Knispel AL, McLachlan SM, Van Acker RC, Friesen LF (2008) Gene flow and multiple herbicide resistance in escaped canola populations. Weed Sci. 56: 72–80 [CrossRef] [Google Scholar]
  • Kotowski Z (2001) Results of the investigations into nectar secretion and pollen production of new cultivars of rape (Brassica napus L.). Acta Hort. (ISHS) 561: 127–129 [Google Scholar]
  • Morris WF, Kareiva PM, Raymer PL (1994) Do barren zones and pollen traps reduce genetic escape from transgenic crops? Ecol. Appl. 4: 157–165 [CrossRef] [Google Scholar]
  • Pechan PM (1988) Ovule fertilization and seed number per pod determination in oil seed rape Brassica napus. Ann. Bot-London 61: 201–208 [Google Scholar]
  • Rakow G, Woods D (1987) Out-crossing in rape and mustard under Saskatchewan prairie conditions. Can. J. Plant Sci. 67: 147–151 [CrossRef] [Google Scholar]
  • Reboud X (2003) Effect of a gap on gene flow between otherwise adjacent transgenic Brassica napus crops. Theor. Appl. Genet. 106: 1048–1058 [PubMed] [Google Scholar]
  • Rogers CA, Wayne PM, Macklin EA, Muilenberg ML, Wagner CJ, Epstein PR, Bazzaz FA (2006) Interaction of the onset of spring and elevated atmospheric CO2 on ragweed (Ambrosia artemisiifolia L.) pollen production. Environ. Health Perspect. 1146: 865–869 [Google Scholar]
  • SAS (2002) SAS/STAT User's Guide, Version 9.1. SAS Institute Inc., Cary, North Carolina, USA, 5180 p [Google Scholar]
  • Scheffler JA, Parkinson R, Dale PJ (1995) Evaluating the effectiveness of isolation distances for field plots of oilseed rape (Brassica napus) using a herbicide-resistance transgene as a selectable marker. Plant Breeding 114: 317–321 [CrossRef] [Google Scholar]
  • Simard M-J, Légère A (2004) Synchrony of flowering between canola and wild radish (Raphanus raphanistrum). Weed Sci. 52: 905–912 [CrossRef] [Google Scholar]
  • Simard M-J, Légère A, Warwick SI (2006) Transgenic Brassica napus fields and Brassica rapa weeds in Québec: sympatry and weed-crop in situ hybridization. Can. J. Bot. 84: 1842–1851 [CrossRef] [Google Scholar]
  • Singh SK, Kakani VG, Brand D, Baldwin B, Reddy KR (2008) Assessment of cold and heat tolerance of winter-grown canola (Brassica napus L.) cultivars by pollen-based parameters. J. Agron. Crop Sci. 194: 225–236 [CrossRef] [Google Scholar]
  • Statistics Canada (2008) Field and specialty crops (seeded area). Available at http://www40.statcan.ca/l01/cst01/prim11a.htm, 1 p [Google Scholar]
  • Tan S, Evans RR, Dahmer ML, Singh BK, Shaner DL (2005) Imidazolinone-tolerant crops: history, current status and future. Pest Manage. Sci. 61: 246–257 [Google Scholar]
  • U N (1935) Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. J. Jpn. Bot. 7: 389–452 [Google Scholar]
  • Warwick SI, Légère A, Simard M-J, James T (2008) Do escaped transgenes persist in nature? The case of an herbicide resistance transgene in a weedy Brassica rapa population. Mol. Ecol. 17: 1387–1395 [CrossRef] [PubMed] [Google Scholar]
  • Weis AE, Kossler TM (2004) Genetic variation in flowering time induces phenological assortative mating: quantitative genetic methods applied to Brassica rapa. Am. J. Bot. 91: 825–836 [CrossRef] [PubMed] [Google Scholar]
  • Willenborg CJ (2009) Characterizing the factors contributing to pollen-mediated gene flow between cropped and volunteer spring wheat (Triticum aestivum L.). Ph.D. Thesis, University of Manitoba, Winnipeg, Manitoba, Canada [Google Scholar]
  • Willenborg CJ, Luschei EC, Brûlé-Babel AL, Van Acker RC (2009) Flowering phenology and synchrony between volunteer and cropped spring wheat: Implications for pollen-mediated gene flow. Crop Sci. 49: 1029–1039 [CrossRef] [Google Scholar]