Open Access
Issue
Environ. Biosafety Res.
Volume 8, Number 2, April-June 2009
Page(s) 65 - 78
DOI https://doi.org/10.1051/ebr/2009009
Published online 22 October 2009
  • Andow DA (2003) Negative and positive data, statistical power, and confidence intervals. Environ. Biosafety Res. 2: 75–80 [EDP Sciences] [PubMed] [Google Scholar]
  • Champion GT, May MJ, Bennett S, Brooks DR, Clark SJ, Daniels RE, Firbank LG, Haughton AJ, Hawes C, Heard MS, Perry JN, Randle Z, Rothery P, Skellern MP, Scott RJ, Squire GR, Thomas MR (2003) Crop management and agronomic context of the Farm Scale Evaluations of genetically modified herbicide-tolerant crops. Phil. Trans. R. Soc. Lond. B 358: 1801–1818 [Google Scholar]
  • Clark SJ, Rothery P, Perry JN, Heard MS (2007) Farm Scale Evaluations of herbicide-tolerant crops: assessment of within-field variation and sampling methodology for arable weeds. Weed Res. 47: 157–163 [CrossRef] [Google Scholar]
  • EFSA (2006) Guidance Document of the Scientific Panel on Genetically Modified Organisms for the risk assessment of genetically modified plants and derived food and feed (Question No EFSA-Q-2003-005). The EFSA Journal 99: 1–100 [Google Scholar]
  • EFSA (2009a) Updated guidance document of the Scientific Panel on Genetically Modified Organisms (GMO) for the risk assessment of genetically modified plants and derived food and feed. http://www.efsa.europa.eu/EFSA/efsa_locale-1178620753812_1211902010430.htm [Google Scholar]
  • EFSA (2009b) Scientific Opinion on Statistical considerations for the safety evaluation of GMOs, on request of EFSA. EFSA Journal 1250, 62 p. http://www.efsa.europa.eu [Google Scholar]
  • EFSA (2009c) General mandate – aspects of the environmental risk assessment (ERA) and the ERA guidance. Question EFSA-Q-2008-262. http://www.efsa.europa.eu/EFSA/efsa_locale-1178620753812_1178697446987.htm [Google Scholar]
  • FIFRA SAP (2000) Report of the Federal Insecticide, Fungicide, and Rodenticide Act. http://www.epa.gov/scipoly/sap/meetings/1999/december/report.pdf [Google Scholar]
  • Hill RA, Sendashonga C (2003) General principles for risk assessment of living modified organisms: Lessons from chemical risk assessment. Environ. Biosafety Res. 2: 81–88 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Hoenig JM, Heisley DM (2001) The abuse of power: The pervasive fallacy of power calculations for data analysis. Am. Stat. 55: 19–24. [CrossRef] [Google Scholar]
  • ICH Harmonised Tripartite Guideline. Statistical principles for clinical trials E9. Current Step 4 version dated 5 February 1998 [Google Scholar]
  • Laster LL, Johnson MF (2003) Non-inferiority trials: the `at least as good as' criterion. Stat. Med. 22: 187–200 [CrossRef] [PubMed] [Google Scholar]
  • Marvier M (2002) Improving risk assessment for nontarget safety of transgenic crops. Ecol. Appl. 12: 1119–1124 [CrossRef] [Google Scholar]
  • Marvier M, McCreedy C, Regetz J, Kareiva P (2007) A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. Science 316: 1475–1477 [CrossRef] [PubMed] [Google Scholar]
  • Niazi S (2007) Handbook of Bioequivalence Testing. CRC Press, ISBN: 0849303958, 569 p [Google Scholar]
  • Perry JN (1986) Multiple-comparison procedures: a dissenting view. J. Econ. Entomol. 79: 1149–1155 [PubMed] [Google Scholar]
  • Perry JN (1989) Review: population variation in Entomology: 1935–1950. I. Sampling. The Entomologist 108: 184–198 [Google Scholar]
  • Perry JN, Rothery P, Clark SJ, Heard MS, Hawes C (2003) Design, analysis and power of the Farm-Scale Evaluations of Genetically-Modified Herbicide-Tolerant crops. J. Appl. Ecol. 40: 17–31 [CrossRef] [Google Scholar]
  • Prasifka JR, Hellmich II RL, Dively GP, Lewis LC (2005) Assessing the effects of pest management on non-target arthropods: the influence of plot size and isolation. Environ. Ent. 34: 1181–1192 [CrossRef] [Google Scholar]
  • Schuirmann DJ (1987) A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability. J. Pharmacokinet. Biop. 15: 657–680 [CrossRef] [Google Scholar]
  • Tempelman RJ (2004) Experimental design and statistical methods for classical and bioequivalence hypothesis testing with an application to dairy nutrition studies. J. Anim. Sci. 82: E162–E172 [PubMed] [Google Scholar]
  • US EPA (2006) Guidance for the Data Quality Objectives Process. EPA QA/G-4. http://www.epa.gov/QUALITY/qs-docs/g4-final.pdf [Google Scholar]
  • van den Brink PJ, ter Braak CJF (1999) Principal response curves: Analysis of time-dependent multivariate responses of biological community to stress. Environ. Toxicol. Chem. 18: 138–148 [Google Scholar]
  • Walters SJ (2008). Consultants' forum: should post hoc sample size calculations be done? Pharm. Stat. 8: 163–169 [Google Scholar]
  • Wellek S (2002) Testing Statistical Hypotheses of Equivalence. CRC Press, ISBN: 1584881607, 284 p [Google Scholar]
  • Winder L, Perry JN, Holland JM (1999) The spatial and temporal distribution of the grain aphid Sitobion avenae in winter wheat. Entomol. Exp. Appl. 93: 277–290 [Google Scholar]
  • Yata K (2008) Two-stage equivalence tests that control both size and power. Seq. Anal. 27: 185–200 [CrossRef] [Google Scholar]