Free Access
Environ. Biosafety Res.
Volume 8, Number 2, April-June 2009
Page(s) 87 - 99
Published online 22 October 2009
  • Ahmedullah M (1983) Morphology of pollen from selected Vitis cultivars. J. Amer. Soc. Hort. Sci. 108: 155–160 [Google Scholar]
  • Ahmedullah M (1986) Pollen morphology of Vitis cultivars using scanning electron microscopy and the significance of pollen classification in grape improvement programme. Conference Proceedings, Vignevini Bologna 13: 54–56 [Google Scholar]
  • Aigrain P (2006) World Vitivinicultural Economical Data available as at 1st October 2006 – OIV – Organisation International de la Vigne et du Vin. http: [Google Scholar]
  • Akkurt M, Welter L, Maul E, Töpfer R, Zyprian E (2007) Development of SCAR markers linked to powdery mildew (Uncinula necator) resistance in grapevine (Vitis vinifera and Vitis sp.). Mol. Breeding 19: 103–111 [CrossRef] [Google Scholar]
  • Alibert B, Sellier H, Souvre A (2005) A combined method to study gene flow from cultivated sugar beet to ruderal beets in the glasshouse and open field. Eur. J. Agron. 23: 195–208 [CrossRef] [Google Scholar]
  • Andreev AA, Nikolaev VI, Boisheiynov DY, Petrov V (1997) Pollen and isotope investigations of an ice core from Vavilov ice cap, October Revolution Island, Severnaya Zemlya arcipelago, Russia. Geogr. Phys. Quatern. 51: 379–389 [Google Scholar]
  • Barber KE (1981) Peat Stratigraphy and Climatic Change: A palaeoecological test of the theory of cyclic peat bog regeneration. Balkema (Publish.), Rotterdam [Google Scholar]
  • Ben Slimane M, Askri F (1989) Pollen size as a mean for identification of some Tunesian vine plants. Annales de l'Institut National de la Recherche Agronomique de Tunisie 62: 3–16 [Google Scholar]
  • Besselat B (1994) Early forecast of grape production: accuracy and usefulness of a new method based on pollen analysis of the atmosphere. In: O.I.V. – 74EXPe Assemblée Générale, 3 : Économie Vitivinicole, Paris, France, 6–10 juin 1994 [Google Scholar]
  • Besselat B, Cour P (1990) La prévision de la production viticole à l'aide de la technique de dosage pollinique de l'atmosphère. Bulletin de O.I.V. 63: 721–740 [Google Scholar]
  • Bornhoff BA, Harst M, Zyprian E, Töpfer R, Iannini C (2000) Transformation studies on Vitis vinifera L. via Agrobacterium tumefaciens. Acta Horticulturae 528: 359–360 [Google Scholar]
  • Bornhoff BA, Harst M, Zyprian E, Töpfer RC (2005) Transgenic plants of Vitis vinifera cv. Seyval blanc. Plant Cell Rep. 24: 433–438 [CrossRef] [PubMed] [Google Scholar]
  • Bronner A, Wagner R (1997) Pollen et floraison chez Vitis vinifera L. – Techniques de contrôle du pouvoir germinatif du pollen. Progrès Agricole et Viticole, France 114: 130–139 [Google Scholar]
  • Carraro L, Lombardo G, Cargnello G, Gerla FM (1981) Further observations on the factors related to the low productivity of Picolit giallo. Vitis 20: 193–201 [Google Scholar]
  • Conner AJ, Mlynarova L, Stiekema WM, Nap JP (1999) Gametophytic expression of GUS activity controlled by potato LHca3.ST1 promotor in tabacco pollen. J. Exp. Bot. 50: 1471–1479 [CrossRef] [Google Scholar]
  • Cunha M, Abreu I, Pinto P, Castro R (2003) Airborne pollen samples for early season estimates of wine production in a Mediterranean climate area of Northern Portugal. Am. J. Enol. Viticult. 54: 189–194 [Google Scholar]
  • De Buck S, Depicker A (2001) Silencing of invertedly repeated transgenes in Arabidopsis thaliana. Meded Rijksuniv. Gent Fak. Landbouwkd Torgrp boil. Wet. 66: 393–399 [Google Scholar]
  • De Marchis F, Belluci M, Arcioni S (2003) Measuring gene flow from two birdsfoot trefoli (Lotus corniculatus) field trial using transgenes as tracer markers. Mol. Ecol. 12: 1681–1685 [CrossRef] [PubMed] [Google Scholar]
  • Devaux C, Lavigne C, Falentin-Guyomarch H, Vautrin S, Lecomte J, Klein EK (2005) High diversity of oilseed rape pollen clouds over an agro-ecosystem indicates long-distance dispersal. Mol. Ecol. 14: 2269–2280 [CrossRef] [PubMed] [Google Scholar]
  • Di Collalto G, Pisani PL, Testi I (1982) Recherche sul trasporto del polline e sulla impollinazione incrociata della vite. Riv. Viticolt. Enol. 35: 91–99 [Google Scholar]
  • Eastham K, Sweet J (2002) Genetically modified Organisms (GMOs): The Significance of Gene Flow Through Pollen Transfer. European Environment Agency (EEA), Environmental Issue Report No. 28, Copenhagen [Google Scholar]
  • Fornaciari M, Romano B (1995) Research to forecast the future yields in olive tree and vineyard in three different areas. Annali della Facoltà di Agraria, Università degli Studi di Perugina, Italy 49: 137–155 [Google Scholar]
  • Funk T, Wenzel G, Schwarz G (2006) Outcrossing frequencies and distribution of transgenic oilseed rape (Brassica napus L.) in the nearest neighbourhood. Eur. J. Agron. 24: 26–34 [CrossRef] [Google Scholar]
  • Halfhill MD, Millwood RJ, Weissinger AK, Warwick SI, Stewart CN (2003) Additive transgene expression and genetic introgression in multiple green-fluorescent protein transgenic crop × weed hybrid generations. Theor. Appl. Genet. 107: 1533–1540 [CrossRef] [PubMed] [Google Scholar]
  • Harst M, Bornhoff BA, Zyprian E, Töpfer R (2000) Influence of culture technique and genotype on the efficiency of Agrobacterium-mediated transformation of somatic embryos (Vitis vinifera) and their conversion to transgenic plants. Vitis 39: 99–102 [Google Scholar]
  • Heazlewood JE, Wilson S (2004) Anthesis, pollination and fruitset in Pinot Noir. Vitis 43: 65–68 [Google Scholar]
  • Hyde HA, Adams KF (1958) An Atlas of Airborne Pollen Grains. MacMillian & Co. Ltd. Publ., London [Google Scholar]
  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3907 [PubMed] [Google Scholar]
  • Kevan PG, Longair RW, Gadawski RM (1985) Dioecy and pollen dimorphism in Vitis riparia (Vitaceae). Can. J. Bot. 63: 2263–2267 [CrossRef] [Google Scholar]
  • (1935) Bemerkungen zum Einschluβ in Glycerin-Gelatine. Zeitschrift für Mikroskopie 51: 372–374 [Google Scholar]
  • Klein EF, Lavigne C, Picault H, Renard M, Gouyon PH (2006) Pollen dispersal of oilseed rape: estimation of the dispersal function and effects of field dimension. J. Appl. Ecol. 43: 141–151 [CrossRef] [Google Scholar]
  • Koblet W, Vetsch U (1968) Entwicklung der Rebblüte und Fruchtansatz. Schweizerische Zeitschrift für Obst- und Weinbau 104: 383–388 [Google Scholar]
  • Kozma P, Scheuring J (1968) Shape and structure of vinepollen in electronmicroscope. Publ. Acad. Hortic. Viticult. 5: 7–29 [Google Scholar]
  • Kuparinen A, Schurr F, Tackenberg O, O'Hara R (2007) Air-mediated pollen flow from genetically modified to conventional crops. Ecol. Appl. 17: 431–440 [CrossRef] [PubMed] [Google Scholar]
  • Linder R, Linskens HF (1978) Le pollen de vigne d'Alsace. Genet. Amelior. Vigne. IIe Symp. Intern. Bordeaux, 75–88 [Google Scholar]
  • Lombardo G, Carraro L, Cargnello G, Bassi M (1976) Study on the ultrastructure of the pollen of Vitis vinifera L. cv. “Picolit” and on the germination after self- and cross-pollination. Riv. Viticolt. Enol. 29: 376–382 [Google Scholar]
  • Loos C, Seppelt R, Meier-Bethke S, Schiemann J, Richter O (2003) Spatially explicit modelling of transgenic maize pollen dispersal and cross pollination. J. Ther. Biol. 225: 241–255 [CrossRef] [PubMed] [Google Scholar]
  • Martens MR, Reisch BI, Mauro MC (1989) Pollen size variability within genotypes of Vitis. HortScience 24: 659–662 [Google Scholar]
  • Messeguer J, Marfà V, Català MM, Guideroni E, Melé E (2004) A field study of pollen-mediated gene flow from Mediterranean GM rice to conventional rice and the red rice weed. Mol. Breeding 13: 103–112 [CrossRef] [Google Scholar]
  • Müller-Thurgau (1884, 1888) Quoted in: Sartorius (1926) [Google Scholar]
  • Muskens MW, Vissers AP, Mol JN, Kooter JM (2000) Role of inverted DNA repeats in transcriptional and post-transcriptional gene silencing. Plant Mol. Biol. 43: 243–260 [CrossRef] [PubMed] [Google Scholar]
  • Panigai L, Moncomble D (1992) Prevision de récolte : Un nouveau capteur à pollen dans l'Aube. Le Vigneron Champenois 113: 20–26 [Google Scholar]
  • Rieger MA, Lamond M, Preston C, Powles SB, Roush RT (2002) Pollen-mediated movement of herbicide resistance between commercial canola fields. Science 296: 2386–2388 [CrossRef] [PubMed] [Google Scholar]
  • Rognli OA, Nillson NO, Nurminiemi M (2000) Effects of distances and pollen competition on gene flow in the wind pollinated grass Festuca pratensis Huds. Heredity 85: 550–560 [CrossRef] [PubMed] [Google Scholar]
  • Sartorius O (1926) Zur Entwicklung und Physiologie der Rebbluete. Angewandte Botanik8: 29–62, 66–89 [Google Scholar]
  • Staudt G (1999) Opening of flowers and time of anthesis in grapevine plants, Vitis vinifera L. Vitis 38: 15–20 [Google Scholar]
  • Tackenberg O (2003) Modeling long-distance dispersal of plant diaspores by wind. Ecol. Monogr. 73: 173–189 [CrossRef] [Google Scholar]
  • Turner SD, Brown AG (2004) Vitis pollen dispersal in and from organic vineyards I. Pollen trap and soil pollen data. Review of Paleobotany and Palynology 129: 117–132 [CrossRef] [Google Scholar]
  • Vancanneyt G, Schmidt R, O'Connor-Sanchez A, Willmitzer I, Rocha-Sosa M (1990) Construction of an intron-containing-marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated plant transformation. Mol. Gen. Genet. 220: 245–250 [PubMed] [Google Scholar]