Free Access
Issue
Environ. Biosafety Res.
Volume 8, Number 1, January-March 2009
Page(s) 45 - 55
Section Regular Articles
DOI https://doi.org/10.1051/ebr/2008024
Published online 22 January 2009
  • Allainguillaume J, Alexander M, Bullock JM, Saunders M, Allender CJ, King G, Ford CS, Wilkinson MJ (2006) Fitness of hybrids between rapeseed (Brassica napus) and wild Brassica rapa in natural habitats. Mol. Ecol. 15: 1175–1184 [CrossRef] [PubMed] [Google Scholar]
  • Allison PD (1995) Survival analysis using SAS®: A practical guide. Cary, NC: SAS Institute Inc., 292 p [Google Scholar]
  • Ammitzboll H, Mikkelsen TN, Jorgensen RB (2005) Transgene expression and fitness of hybrids between GM oilseed rape and Brassica rapa. Environ. Biosafety Res. 4: 3–12 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Andow DA, Zwahlen C (2006) Assessing environmental risks of transgenic plants. Ecol. Lett. 9: 196–214 [CrossRef] [PubMed] [Google Scholar]
  • Clark EA (2006) Environmental risks of genetic engineering. Euphytica 148: 47–60 [CrossRef] [Google Scholar]
  • Colwell RK, Norse EA, Pimentel D, Sharples FE, Simberloff D (1985) Genetic engineering in agriculture. Science 229: 111 [CrossRef] [PubMed] [Google Scholar]
  • Darmency H (1994) The impact of hybrids between genetically modified crop plants and their related species: Introgression and weediness. Mol. Ecol. 3: 37–40. [CrossRef] [Google Scholar]
  • Delannay X, LaVallee B, Proksch R, Fuchs R, Sims S, Greenplate J, Marrone PG, Dodson RB, Augustine JJ, Layton JG, Fishhoff D (1989) Field performance of transgenic tomato plants expressing the Bacillus thuringinesis var. kurstaki insect control protein. Bio/technology 7: 1265–1269 [Google Scholar]
  • Ellstrand NC (2003) Dangerous liaisons?: when cultivated plants mate with their wild relatives, Johns Hopkins University Press, Baltimore [Google Scholar]
  • Ellstrand NC, Prentice HC, Hancock JF (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu. Rev. Ecol. Syst. 30: 539–563 [CrossRef] [Google Scholar]
  • FitzJohn RG, Armstrong TT, Newstrom-Lloyd LE, Wilton AD, Cochrane M (2007) Hybridisation within Brassica and allied genera: evaluation of potential for transgene escape. Euphytica 158: 209–230 [CrossRef] [Google Scholar]
  • Gould F (1988) Evolutionary biology and genetically engineered crops. BioScience 38: 26–33 [CrossRef] [Google Scholar]
  • Hails RS (2000) Genetically modified plants - the debate continues. TREE 15: 14–18 [CrossRef] [Google Scholar]
  • Hails RS, Morley K (2005) Genes invading new populations: a risk assessment perspective. TREE 20: 245–252 [Google Scholar]
  • Halfhill MD, Sutherland JP, Moon HS, Poppy GM, Warwick SI, Weissinger AK, Rufty TW, Raymer PL, Stewart CN (2005) Growth, productivity, and competitiveness of introgressed weedy Brassica rapa hybrids selected for the presence of Bt cry1Ac and gfp transgenes. Mol. Ecol. 14: 3177–3189 [CrossRef] [PubMed] [Google Scholar]
  • Hilbeck A (2001) Implications of transgenic, insecticidal plants for insect and plant biodiversity. Persp. Plant Ecol. Evol. Syst. 4: 43–61 [CrossRef] [Google Scholar]
  • Hoffman CA (1990) Ecological risks of genetic engineering of crop plants: scientific and social analyses are critical to realize benefits of the new techniques. BioScience 40: 434 [CrossRef] [Google Scholar]
  • Jorgensen RB, Andersen B (1994) Spontaneous hybridization between oilseed rape (Brassica napus) and weedy Brassica campestris (Brassicaceae) - a risk of growing genetically-modified oilseed rape. Am. J. Bot. 81: 1620–1626 [CrossRef] [Google Scholar]
  • Kareiva P, Morris W, Jacobi CM (1994) Studying and managing the risk of cross-fertilization between transgenic crops and wild relatives. Mol. Ecol. 3: 15–21 [CrossRef] [Google Scholar]
  • Letourneau DK, Hagen JA, Robinson GS (2002) Bt-crops: Evaluating benefits under cultivation and risks from escaped transgenes in the wild. In Letourneau DK, Burrows BE, eds, Genetically Engineered Organisms: Assessing Environmental and Human Health Effects, CRC Press, Boca Raton, Florida [Google Scholar]
  • Letourneau DK, Robinson GS, Hagen JA (2003) Bt crops: Predicting effects of escaped transgenes on the fitness of wild plants and their herbivores. Environ. Biosafety Res. 2: 219–246 [Google Scholar]
  • Marvier M, Kareiva P (1999) Extrapolating from field experiments that remove herbivores to population-level effects of herbivore-resistant transgenes. Workshop on Ecological Effects of Pest Resistance Genes in Managed Ecosystems, Information Systems for Biotechnology, Bethesda, Maryland, pp 57–64 [Google Scholar]
  • Mason P, Braun L, Warwick SI, Zhu B, Stewart CN Jr (2003) Transgenic Bt-producing Brassica napus: Plutella plutella selection pressure and fitness of weedy relatives. Environ. Biosafety Res. 2: 263–276 [Google Scholar]
  • Moon HS, Halfhill MD, Good LL, Raymer PL, Stewart CN (2007) Characterization of directly transformed weedy Brassica rapa and introgressed B. rapa with Bt cry1Ac and gfp genes. Plant Cell Rep. 26: 1001–1010 [CrossRef] [PubMed] [Google Scholar]
  • National Research Council (2002) Environmental Effects of Transgenic Plants. National Academy of Sciences, Washington, DC [Google Scholar]
  • Parker IM, Kareiva P (1996) Assessing the risks of invasion for genetically engineered plants: Acceptable evidence and reasonable doubt. Biol. Cons. 78: 193–203 [Google Scholar]
  • Ramachandran S, Buntin GD, All JN, Raymer PL, Stewart CN (2000) Intraspecific competition of an insect-resistant transgenic canola in seed mixtures. Agron. J. 92: 368–374 [Google Scholar]
  • Randall JM (1996) Weed control for the preservation of biological diversity. Weed Tech. 10: 370–383 [Google Scholar]
  • Raybould A, Cooper I (2005) Tiered tests to assess the environmental risk of fitness changes in hybrids between transgenic crops and wild relatives: the example of virus resistant Brassica napus. Environ. Biosafety Res. 4: 127–140 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Riggin-Bucci TM, Gould F (1997) Impact of intraplot mixtures of toxic and nontoxic plants on population dynamics of diamondback moth (Lepidoptera: Plutellidae) and its natural enemies. J. Econ. Ent. 90: 241–251 [Google Scholar]
  • SAS Institute Inc. (2004) SAS V.9.1. SAS Institute Inc., Cary, North Carolina, USA [Google Scholar]
  • Snow AA, Moran-Palma P (1997) Commercialization of transgenic plants: Potential ecological risks. BioScience 47: 206–206 [Google Scholar]
  • Snow AA, Pilson D, Rieseberg LH, Paulsen MJ, Pleskac N, Reagon MR, Wolf DE, Selbo SM (2003) A Bt transgene reduces herbivory and enhances fecundity in wild sunflowers. Ecol. Appl. 12: 279–286 [CrossRef] [Google Scholar]
  • Snow AA, Andow DA, Gepts P, Hallerman EM, Power A, Tiedje JM, Wolfenbarger LL (2005) Genetically engineered organisms and the environment: Current status and recommendations. Ecol. Appl. 15: 377–404 [CrossRef] [Google Scholar]
  • Stewart CN, All JN, Raymer PL, Ramachandran S (1997) Increased fitness of transgenic insecticidal rapeseed under insect selection pressure. Mol. Ecol. 6: 773–779 [CrossRef] [Google Scholar]
  • Sutherland JP, Justinova L, Poppy GM (2006) The responses of crop-wild Brassica hybrids to simulated herbivory and interspecific competition: Implications for transgene introgression. Environ. Biosafety Res. 5: 15–25 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Tabashnik BE, Cushing NL, Finson N, Johnson MW (1990) Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera, Plutellidae). J. Econ. Ent. 83: 1671–1676 [Google Scholar]
  • Tiedje JM, Colwell RK, Grossman YL, Hodson RE, Lenski RE, Mack RN, Regal PJ (1989) The planned introduction of genetically engineered organisms: ecological considerations and recommendations. Ecology 70: 298 [CrossRef] [Google Scholar]
  • Vacher C, Weiss AE, Hermann D, Kossler T, Young C, Hochberg ME (2004) Impact of ecological factors on the initial invasion of Bt transgenes into wild populations of birdseed rape (Brassica rapa). Theor. Appl. Genet. 109: 806–814 [CrossRef] [PubMed] [Google Scholar]
  • Warwick SI, Stewart CN (2005) Crops come from wild plants – how domestication, transgenes, and linkage together shape ferality. In Gressel J, ed, Crop Ferality and Volunteerism, CRC/Taylor and Francis, Boca Raton, FL, pp 9–30 [Google Scholar]
  • Warwick SI, Simard MJ, Legere A, Beckie HJ, Braun L, Zhu B, Mason P, Seguin-Swartz G, Stewart CN (2003) Hybridization between transgenic Brassica napus L. and its wild relatives: Brassica rapa L., Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.) O.E. Schulz. Theor. Appl. Genet. 107: 528–539 [CrossRef] [PubMed] [Google Scholar]
  • Wolfenbarger LL, Phifer PR (2000) The ecological risks and benefits of genetically engineered plants. Science 290: 2088 [CrossRef] [PubMed] [Google Scholar]
  • Zhu B, Lawrence JR, Warwick SI, Mason P, Braun L, Halfhill MD, Stewart CN, Jr (2004) Inheritance of GFP-Bt transgenes from Brassica napus in backcrosses with three wild B. rapa accessions. Environ. Biosafety Res. 3: 45–54 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]