Free Access
Environ. Biosafety Res.
Volume 8, Number 1, January-March 2009
Page(s) 19 - 32
Section Regular Articles
Published online 11 February 2009
  • Ali S, ed (2003) Crop Protection. Alberta Agriculture, Food and Rural Development, Alberta, Canada [Google Scholar]
  • Anonymous (2007a) Canadian Seed Growers' Association: Crop Certification Regulations (Circular 6). Accessed electronically, 10 November 2007, [Google Scholar]
  • Anonymous (2007b) Utah Crop Improvement Association. Accessed electronically, 29 July 2007, [Google Scholar]
  • Beckie HJ, Hall LM (2008) Simple to complex: Modelling crop pollen-mediated gene flow. Plant Sci. 175: 615–628 [CrossRef] [Google Scholar]
  • Beckie HJ, Heap IM, Smeda RJ, Hall LM (2000) Screening for herbicide resistance in weeds. Weed Technol. 14: 428–445 [CrossRef] [Google Scholar]
  • Beckie HJ, Warwick SI, Nair H, Seguin-Swartz GS (2003) Gene flow in commercial fields of herbicide-resistant canola (Brassica napus). Ecol. Appl. 13: 1276–1294 [CrossRef] [Google Scholar]
  • Butler GD, Jr, Werner FG, Levin DA (1966) Native bees associated with safflower in South Central Arizona. J. Kan. Entomol. Soc. 39: 434–436 [Google Scholar]
  • [CFIA] Canadian Food Inspection Agency - Plant Products Directorate (2005) Special Crops and New Crop Inspection Procedures. Accessed electronically, 10 November 2007, [Google Scholar]
  • [CFIA] Canadian Food Inspection Agency (2006) Specific terms and conditions to conduct field trials with PNT. Accessed electronically, 6 April 2007, [Google Scholar]
  • Claassen CE (1950) Natural and controlled crossing in safflower, Carthamus tinctorius L. Agron. J. 42: 301–304 [Google Scholar]
  • Cresswell JE, Bassom AP, Bell SA, Collins SJ, Kelly TB (1995) Predicted pollen dispersal by honey-bees and three species of bumble-bees foraging on oil-seed rape: A comparison of three models. Funct. Ecol. 9: 829–841 [CrossRef] [Google Scholar]
  • Damgaard C, Kjellsson G (2005) Gene flow of oilseed rape (Brassica napus) according to isolation distance and buffer zone. Agric. Ecosyst. Environ. 108: 291–301 [CrossRef] [Google Scholar]
  • Deokar AB, Patil FB (1976) Vicinism in safflower. Journal of Maharashtra Agricultural Universities 1: 232–234 [Google Scholar]
  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure from small quantities of fresh leaf tissues. Phytochem. Bull. 19: 11–15 [Google Scholar]
  • Eastham K, Sweet J (2002) Genetically modified organisms (GMOs): The significance of gene flow through pollen transfer. European Environment Agency, Copenhagen, UK [Google Scholar]
  • Ellstrand N (2003) Going to “great lengths” to prevent the escape of genes that produce specialty chemicals. Plant Physiol. 132: 1770–1774 [CrossRef] [PubMed] [Google Scholar]
  • Fritz S, Lukaszewski A (1989) Pollen longevity in wheat, rye and triticale. Plant Breed. 102: 31–34 [CrossRef] [Google Scholar]
  • Gary NE, Witherell PC, Lorenzen K, Marston JM (1977) The interfield distribution of honey bees foraging on carrots, onions, and safflower. Environ. Entomol. 5: 637–640 [Google Scholar]
  • Goggi AS, Caragea P, Lopez-Sanchez H, Westgate M, Arritt R, Clark C (2006) Statistical analysis of outcrossing between adjacent maize grain production fields. Field Crops Res. 99: 147–157 [CrossRef] [Google Scholar]
  • Goggi AS, Lopez-Sanchez H, Caragea P, Westgate M, Arritt R, Clark CA (2007) Gene flow in maize fields with different local pollen densities. Int. J. Biometeorol. 51: 493–503 [CrossRef] [PubMed] [Google Scholar]
  • Gustafson DI, Horak MJ, Rempel CB, Metz SG, Gigax DR, Hucl P (2005) An empirical model for pollen-mediated gene flow in wheat. Crop Sci. 45: 1286–1294 [CrossRef] [Google Scholar]
  • Gustafson DI, Rosenbaum EW, Soteres JK, Remund KM, Brants IO, Horak MJ (2006) Empirical modeling of genetically modified maize grain production practices to achieve European Union labeling thresholds. Crop Sci. 46: 2133–2140 [CrossRef] [Google Scholar]
  • Hanson BD, Mallory-Smith CA, Shafii B, Thill DC, Zemetra RS (2005) Pollen-mediated gene flow from blue aleurone wheat to other wheat cultivars. Crop Sci. 45: 1610–1617 [CrossRef] [Google Scholar]
  • Howard A, Howard GLC, Khan AR (1915) Studies in Indian oil-seeds. Memoirs of the Department of Agriculture in India 7: 237-272 [Google Scholar]
  • Hoyle M, Hayter K, Cresswell JE (2007) Effect of pollinator abundance on self-fertilization and gene flow: Application to GM canola. Ecol. Appl. 17: 2123–2135 [CrossRef] [PubMed] [Google Scholar]
  • Hucl P (1996) Out-crossing rates for 10 Canadian spring wheat cultivars. Can. J. Plant Sci. 76: 423–427 [Google Scholar]
  • Hucl P, Matus-Cadiz M (2001) Isolation distances for minimizing out-crossing in spring wheat. Crop Sci. 41: 1348–1351 [CrossRef] [Google Scholar]
  • Kadam BS, Patankar VK (1942) Natural cross-pollination in safflower. Indian J. Genetics Pl. Breeding 2: 69–70 [Google Scholar]
  • Kareiva P, Morris W, Jacobi CM (1994) Studying and managing the risk of cross fertilization between transgenic crops and wild relatives. Mol. Ecol. 3: 15–21 [CrossRef] [Google Scholar]
  • Levin DA, Kerster HW (1974) Gene flow in seed plants. Evol. Biol. 7: 139–220 [Google Scholar]
  • Luna SV, Figueroa JM, Baltazar BM, Gomez RL, Townsend R, Schoper JB (2001) Maize pollen longevity and distance isolation requirements for effective pollen control. Crop Sci. 41: 1551–1557 [CrossRef] [Google Scholar]
  • Manasse RS (1992) Ecological risks of transgenic plants: Effects of spatial dispersion on gene flow. Ecol. Appl. 2: 431–438 [CrossRef] [PubMed] [Google Scholar]
  • Matus-Cadiz MA, Hucl P, Dupuis B (2007) Pollen-mediated gene flow in wheat at the commercial scale. Crop Sci. 47: 573–581 [CrossRef] [Google Scholar]
  • Messeguer J (2003) Gene flow assessment in transgenic plants. Plant Cell Tissue Organ Cult. 73: 201–212 [Google Scholar]
  • Morris W, Kareiva P, Raymer P (1994) Do barren zones and pollen traps reduce gene escape from transgenic crops? Ecol. Appl. 4: 157–165 [CrossRef] [Google Scholar]
  • Muendel HH, Blackshaw RE, Byers RJ, Huang HC, Keon JR, Kubik J, McKenzie R, Otto B, Roth B, Stanford K (2004) Safflower Production on the Canadian Prairies: revisited in 2004. Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta [Google Scholar]
  • Ramsay G (2005) Pollen dispersal vectored by wind or insects. In Poppy, MJ Wilkinson, eds, Gene flow from GM plants, Blackwell Publishing, Ames, Iowa, USA, pp 43–77 [Google Scholar]
  • Reboud X (2003) Effect of a gap on gene flow between otherwise adjacent transgenic Brassica napus crops. Theor. Appl. Genet. 106: 1048–1058 [Google Scholar]
  • Rieger MA, Lamond M, Preston C, Powles SB, Roush RT (2002) Pollen-mediated movement of herbicide resistance between commercial canola fields. Science (Wash.) 296: 2386–2388 [CrossRef] [PubMed] [Google Scholar]
  • Rognli OA, Nilsson NO, Nurminiemi M (2000) Effects of distance and pollen competition on gene flow in the wind-pollinated grass Festuca pratensis Huds. Heredity 85: 550–560 [CrossRef] [PubMed] [Google Scholar]
  • [SAS] Statistical Analysis Systems (2007) SAS/STAT User's Guide: Statistics. SAS Institute Inc., Cary NC [Google Scholar]
  • Staniland BK, McVetty PBE, Friesen LF, Yarrow S, Freyssinet G, Freyssinet M (2000) Effectiveness of border areas in confining the spread of transgenic Brassica napus pollen. Can. J. Plant Sci. 80: 521–526 [Google Scholar]
  • Weekes R, Deppe C, Allnutt T, Boffey C, Morgan D, Morgan S, Bilton M, Daniels R, Henry C (2005) Crop-to-crop gene flow using farm scale sites of oilseed rape (Brassica napus) in the UK. Transgenic Res. 14: 749–759 [CrossRef] [PubMed] [Google Scholar]
  • Weekes R, Allnutt T, Boffey C, Morgan S, Bilton M, Daniels R, Henry C (2007) A study of crop-to-crop gene flow using farm scale sites of fodder maize (Zea mays L.) in the UK. Transgenic Res. 16: 203–211 [CrossRef] [PubMed] [Google Scholar]
  • Zar JH (1999) Biostatistical Analysis. Prentice-Hall, Inc., Upper Saddle River, New Jersey, USA, pp 473–475, 527–528, 539–542 [Google Scholar]