Open Access
Review

This article has an erratum: [https://doi.org/10.1051/ebr:2008017]


Issue
Environ. Biosafety Res.
Volume 7, Number 3, July-September 2008
Page(s) 123 - 149
DOI https://doi.org/10.1051/ebr:2008014
Published online 20 September 2008
  • Aaziz R, Tepfer M (1999) Recombination in RNA viruses and in virus-resistant transgenic plants. J. Gen. Virol. 80: 1339–1346 [Google Scholar]
  • Abbot P, Aviles AE, Eller L, Durden LA (2007) Mixed infections, cryptic diversity, and vector-borne pathogens: evidence from Polygenis fleas and Bartonella species. Appl. Environ. Microbiol. 73: 6045–6052 [Google Scholar]
  • Acinas SG, Marcelino LA, Klepac-Ceraj V, Polz MF (2004) Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. J. Bacteriol. 186: 2629–2635 [Google Scholar]
  • Adair TL, Kearney CM (2000) Recombination between a 3-kilobase tobacco mosaic virus transgene and a homologous viral construct in the restoration of viral and nonviral genes. Arch. Virol. 145: 1867–1883 [Google Scholar]
  • Aeschbacher K, Messikommer R, Meile L, Wenk C (2005) Bt176 corn in poultry nutrition: physiological characteristics and fate of recombinant plant DNA in chickens. Poult. Sci. 84: 385–394 [Google Scholar]
  • Agranovsky AA, Boyko VP, Karasev AV, Koonin EV, Dolja VV (1991) Putative 65 kDa protein of beet yellows closterovirus is a homologue of HSP70 heat shock proteins. J. Mol. Biol. 217: 603–610 [Google Scholar]
  • Ambur OH, Frye SA, Tønjum T (2007) New functional identity for the DNA uptake sequence in transformation and its presence in transcriptional terminators. J. Bacteriol. 189: 2077–2085 [Google Scholar]
  • Andersson JO (2005) Lateral gene transfer in eukaryotes. Cell Mol. Life Sci. 62: 1182–1197 [Google Scholar]
  • Andersson JO, Sjögren AM, Horner DS, Murphy CA, Dyal PL, Svärd SG, Logsdon JM Jr, Ragan MA, Hirt RP, Roger AJ (2007) A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution. BMC Genomics 8: 51 [Google Scholar]
  • Aoki S, Syōno K (1999) Horizontal gene transfer and mutation: Ngrol genes in the genome of Nicotiana glauca. Proc. Natl. Acad. Sci. USA 96: 13229–13234 [Google Scholar]
  • Aravind L, Tatusov RL, Wolf YI, Walker DR, Koonin EV (1998) Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. Trends Genet. 14: 442–444 [Google Scholar]
  • Ashby MK, Warry A, Bejarano ER, Khashoggi A, Burrell M, Lichtenstein CP (1997) Analysis of multiple copies of geminiviral DNA in the genome of four closely related Nicotiana species suggest a unique integration event. Plant Mol. Biol. 35: 313–321 [Google Scholar]
  • Audic S, Robert C, Campagna B, Parinello H, Claverie JM, Raoult D, Drancourt M (2007) Genome analysis of Minibacterium massiliensis highlights the convergent evolution of water-living bacteria. PLoS Genet. 3: e138 [Google Scholar]
  • Babić A, Lindner AB, Vulić M, Stewart EJ, Radman M (2008) Direct visualization of horizontal gene transfer. Science 319: 1533–1536 [Google Scholar]
  • Banner LM, Lai MMC (1991) Random nature of coronavirus RNA recombination in the absence of selection pressure. Virology 185: 441–445 [Google Scholar]
  • Bateson MF, Lines RE, Revill P, Chaleeprom W, Ha CV, Gibbs AJ, Dale JL (2002) On the evolution and molecular epidemiology of the potyvirus Papaya ringspot virus. J. Gen. Virol. 83: 2575–2585 [Google Scholar]
  • Bathe S, Mohan TV, Wuertz S, Hausner M (2004) Bioaugmentation of a sequencing batch biofilm reactor by horizontal gene transfer. Water Sci. Technol. 49: 337–344 [Google Scholar]
  • Beaber JW, Hochhut B, Waldor MK (2004) SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427: 72–74 [Google Scholar]
  • Beagle JM, Apgar GA, Jones KL, Griswold KE, Radcliffe JS, Qiu X, Lightfoot DA, Iqbal MJ (2006) The digestive fate of Escherichia coli glutamate dehydrogenase deoxyribonucleic acid from transgenic corn in diets fed to weanling pigs. J. Anim Sci. 84: 597–607 [Google Scholar]
  • Becker Y (2000) Evolution of viruses by acquisition of cellular RNA or DNA nucleotide sequences and genes: An introduction. Virus Genes 21: 7–12 [Google Scholar]
  • Beiko RG, Harlow TJ, Ragan MA (2005) Highways of gene sharing in prokaryotes. Proc. Natl. Acad. Sci. USA 102: 14332–14337 [CrossRef] [Google Scholar]
  • Bejarano ER, Khashoggi A, Witty M, Lichtenstein C (1996) Integration of multiple repeats of geminiviral DNA into the nuclear genome of tobacco during evolution. Proc. Natl. Acad. Sci. USA 93: 759–764 [Google Scholar]
  • Belfort M, Berbyshire V, Parker MM, Cousineau B, Lambowitz AM (2002) Mobile introns: Pathways and proteins. In Craig NL, Craigie R, Gellert M, Lambowitz AM, eds, Mobile DNA II, American Society for Microbiology, pp 761–783 [Google Scholar]
  • Bennett PM, Livesey CT, Nathwani D, Reeves DS, Saunders JR, Wise R (2004) An assessment of the risks associated with the use of antibiotic resistance genes in genetically modified plants: report of the Working Party of the British Society for Antimicrobial Chemotherapy. J. Antimicrob. Chemother. 53: 418–431 [Google Scholar]
  • Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, O'Neil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141–147 [Google Scholar]
  • Bird DM, Koltai H (2000) Plant parasitic nematodes: habitats, hormones, and horizontally-acquired genes. J. Plant Growth Reg. 19: 183–194 [Google Scholar]
  • Böhne A, Brunet F, Galiana-Arnoux D, Schultheis C, Volff JN (2008) Transposable elements as drivers of genomic and biological diversity in vertebrates. Chromosome Res. 16: 203–215 [CrossRef] [PubMed] [Google Scholar]
  • Bonnet J, Fraile A, Sacristán S, Malpica JM, García-Arenal F (2005) Role of recombination in the evolution of natural populations of Cucumber mosaic virus, a tripartite RNA plant virus. Virology 332: 359–368 [Google Scholar]
  • Borja M, Rubio T, Scholthof HB, Jackson AO (1999) Restoration of wild-type virus by double recombination of tombusvirus mutants with a host transgene. Mol. Plant. Microbe Interact. 12: 153–162 [Google Scholar]
  • Bos L (1999) Plant viruses, unique and intriguing plant pathogens – a textbook of plant virology. Backhuys Publishers, Leiden, The Netherlands [Google Scholar]
  • Botstein D (1980) A theory of modular evolution for bacteriophages. Ann. NY Acad. Sci. 354: 484–490 [Google Scholar]
  • Boucher Y, Labbate M, Koenig JE, Stokes HW (2007) Integrons: mobilizable platforms that promote genetic diversity in bacteria. Trends Microbiol. 15: 301–309 [Google Scholar]
  • Boyle DB, Coupar BE, Gibbs AJ, Seigman LJ, Both GW (1987) Fowlpox virus thymidine kinase: nucleotide sequence and relationships to other thymidine kinases. Virology 156: 355–365 [Google Scholar]
  • Breitbart M, Rohwer F (2005) Here a virus, there a virus, everywhere the same virus? Trends Microbiol. 13: 278–284 [Google Scholar]
  • Brigneti G, Voinnet O, Li WX, Ji LH, Ding SW, Baulcombe DC (1998) Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. EMBO J. 17: 6739–6746 [Google Scholar]
  • Brinkmann N, Tebbe CC (2007) Leaf-feeding larvae of Manduca sexta (Insecta, Lepidoptera) drastically reduce copy numbers of aadA antibiotic resistance genes from transplastomic tobacco but maintain intact aadA genes in their feces. Environ. Biosafety. Res. 6: 121–133 [Google Scholar]
  • Bromham L, Penny D (2003) The modern molecular clock. Nature Rev. Genet. 4: 216–224 [Google Scholar]
  • Broothaerts W, Mitchell HJ, Weir B, Kaines S, Smith LM, Yang W, Mayer JE, Roa-Rodriguez C, Jefferson RA (2005) Gene transfer to plants by diverse species of bacteria. Nature 433: 629–633 [Google Scholar]
  • Bruyère A, Wantroba M, Flasinski S, Dzianott A, Bujarski JJ (2000) Frequent homologous recombination events between molecules of one RNA component in a multipartite RNA virus. J. Virol. 74: 4214–4219 [Google Scholar]
  • Bujarski JJ, Nagy PD (1996) Different mechanisms of homologous and nonhomologous recombination in brome mosaic virus: Role of RNA sequences and replicase proteins. Sem. Virol. 7: 363–372 [Google Scholar]
  • Bundock P, Den DRA, Beijersbergen A, Hooykaas PJJ (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J. 14: 3206–3214 [Google Scholar]
  • Burrus V, Waldor MK (2004) Shaping bacterial genomes with integrative and conjugative elements. Res. Microbiol. 155: 376–386 [Google Scholar]
  • Bushman F (2002) Lateral DNA transfer: mechanisms and consequences. Cold Spring Harbor Laboratory Press, New York, USA [Google Scholar]
  • Canbäck B, Tamas I, Andersson SG (2004) A phylogenomic study of endosymbiotic bacteria. Mol. Biol. Evol. 21: 1110–1122 [Google Scholar]
  • Carattoli A (2001) Importance of integrons in the diffusion of resistance. Vet. Res. 32: 243–259 [Google Scholar]
  • Carrère I, Tepfer M, Jacquemond M (1999) Recombinants of cucumber mosaic virus (CMV): Determinants of host range and symptomatology. Arch. Virol. 144: 365–379 [Google Scholar]
  • Cascales E, Christie PJ (2004) Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304: 1170–1173 [Google Scholar]
  • Chambers PA, Duggan PS, Heritage J, Forbes JM (2002) The fate of antibiotic resistance marker genes in transgenic plant feed material fed to chickens. J. Antimicrob. Chemother. 49: 161–164 [Google Scholar]
  • Chare ER, Gould EA, Holmes EC (2003) Phylogenetic analysis reveals a low rate of homologous recombination in negative-sense RNA viruses. J. Gen. Virol. 84: 2691–2703 [Google Scholar]
  • Chen I, Christie PJ, Dubnau D (2005) The ins and outs of DNA transfer in bacteria. Science 310: 1456–1460 [Google Scholar]
  • Chowdhury EH, Kuribara H, Hino A, Sultana P, Mikami O, Shimada N, Guruge KS, Saito M, Nakajima Y (2003) Detection of corn intrinsic and recombinant DNA fragments and Cry1Ab protein in the gastrointestinal contents of pigs fed genetically modified corn Bt11. J. Anim Sci. 81: 2546–2551 [Google Scholar]
  • Chowdhury EH, Mikami O, Murata H, Sultana P, Shimada N, Yoshioka M, Guruge KS, Yamamoto S, Miyazaki S, Yamanaka N, Nakajima Y (2004) Fate of maize intrinsic and recombinant genes in calves fed genetically modified maize Bt11. J. Food Prot. 67: 365–370 [Google Scholar]
  • Cummins J, Ho MW, Ryan A (2000) Hazardous CaMV promoter? Nat. Biotechnol. 18: 363–363 [Google Scholar]
  • d'Adda di Fagagna F, Weller GR, Doherty AJ, Jackson SP (2003) The Gam protein of bacteriophage Mu is an orthologue of eukaryotic Ku. EMBO Rep. 4: 47–52 [Google Scholar]
  • D'Costa VM, McGrann KM, Hughes DW, Wright GD (2006) Sampling the antibiotic resistome. Science 311: 374–377 [Google Scholar]
  • Daubin V, Ochman H (2004) Bacterial genomes as new gene homes: the genealogy of ORFans in E. coli. Genome Res. 14: 1036–1042 [Google Scholar]
  • Daubin V, Perrière G (2003) G+C3 structuring along the genome: a common feature in prokaryotes. Mol. Biol. Evol. 20: 471–483 [Google Scholar]
  • Davison J (1999) Genetic exchange between bacteria in the environment. Plasmid 42: 73–91 [Google Scholar]
  • de Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nature Biotech. 16: 839–842 [Google Scholar]
  • de la Cruz F, Davies J (2000) Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol. 8: 128–133 [Google Scholar]
  • De Vries J, Wackernagel W (1998) Detection of nptII (kanamycin resistance) genes in genomes of transgenic plants by marker-rescue transformation. Mol. Gen. Genet. 257: 606–613 [Google Scholar]
  • De Vries J, Wackernagel W (2002) Integration of foreign DNA during natural transformation of Acinetobacter sp. by homology-facilitated illegitimate recombination. Proc. Natl. Acad. Sci. USA 99: 2094–2099 [Google Scholar]
  • De Vries J, Meier P, Wackernagel W (2001) The natural transformation of the soil bacteria Pseudomonas stutzeri and Acinetobacter sp. by transgenic plant DNA strictly depends on homologous sequences in the recipient cells. FEMS Microbiol. Lett. 195: 211–215 [Google Scholar]
  • Deaville ER, Maddison BC (2005) Detection of transgenic and endogenous plant DNA fragments in the blood, tissues, and digesta of broilers. J. Agric. Food Chem. 53: 10268–10275 [Google Scholar]
  • Deitsch K, Driskill C, Wellems T (2001) Transformation of malaria parasites by the spontaneous uptake and expression of DNA from human erythrocytes. Nucleic Acids Res. 29: 850–853 [Google Scholar]
  • Demanèche S, Bertolla F, Buret F, Nalin R, Sailland A, Auriol P, Vogel TM, Simonet P (2001) Laboratory-scale evidence for lightning-mediated gene transfer in soil. Appl. Environ. Microbiol. 67: 3440–3444 [Google Scholar]
  • DeMarco R, Mathieson W, Dillon GP, Wilson AR (2007) Schistosome albumin is of host, not parasite, origin. Int. J. Parasitol. 37: 1201–1208 [Google Scholar]
  • Derbise A, Chenal-Francisque V, Pouillot F, Fayolle C, Prévost M-C, Médigue C, Hinnebusch BJ, Carniel E (2007) A horizontally acquired filamentous phage contributes to the pathogenicity of the plague bacillus. Mol. Microbiol. 63: 1145–1157 [Google Scholar]
  • Ding SW, Shi BJ, Li WX, Symons RH (1996) An interspecies hybrid RNA virus is significantly more virulent than either parental virus. Proc. Natl. Acad. Sci. USA 93: 7470–7474 [Google Scholar]
  • Ding Z, Atmakuri K, Christie PJ (2003) The outs and ins of bacterial type IV secretion substrates. Trends Microbiol. 11: 527–535 [Google Scholar]
  • Doolittle RF, Feng DF, Anderson KL, Alberro MR (1990) A naturally occurring horizontal gene transfer from a eukaryote to a prokaryote. J. Mol. Evol. 31: 383–388 [Google Scholar]
  • Doolittle WF (1998) You are what you eat: A gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet. 14: 307–311 [Google Scholar]
  • Doolittle WF, Sapienza C (1980) Selfish genes, the phenotype paradigm and genome evolution. Nature 284: 601–603 [Google Scholar]
  • Dorward DW, Garon CF, Judd RC (1989) Export and intercellular transfer of DNA via membrane blebs of Neisseria gonorrhoeae. J. Bacteriol. 171: 2499–2505 [Google Scholar]
  • Douglas S, Zauner S, Fraunholz M, Beaton M, Penny S, Deng LT, Wu X, Reith M, Cavalier-Smith T, Maier UG (2001) The highly reduced genome of an enslaved algal nucleus. Nature 410: 1091–1096 [Google Scholar]
  • Douville M, Gagné F, Blaise C, André C (2007) Occurrence and persistence of Bacillus thuringiensis (Bt) and transgenic Bt corn cry1Ab gene from an aquatic environment. Ecotoxicol. Environ. Saf. 66: 195–203 [Google Scholar]
  • Doyle M, Fookes M, Mangan MW, Wain J, Dorman CJ (2007) An H-NS-like stealth protein aids horizontal DNA transmission in bacteria. Science 315: 251–252 [Google Scholar]
  • Draghi JA, Turner PE (2006) DNA secretion and gene-level selection in bacteria. Microbiology 152: 2683–2688 [Google Scholar]
  • Dreiseikelmann B (1994) Translocation of DNA across bacterial membranes. Microbiol. Rev. 58: 293–316 [Google Scholar]
  • Dubnau D (1999) DNA uptake in bacteria. Annu. Rev. Microbiol. 53: 217–244 [Google Scholar]
  • Dufraigne C, Fertil B, Lespinats S, Giron A, Deschavanne P (2005) Detection and characterization of horizontal transfers in prokaryotes using genomic signature. Nucleic Acids Res. 33: e6 [Google Scholar]
  • Duggan PS, Chambers PA, Heritage J, Michael FJ (2003) Fate of genetically modified maize DNA in the oral cavity and rumen of sheep. Br. J. Nutr. 89: 159–166 [Google Scholar]
  • Dykhuizen DE, Baranton G (2001) The implications of a low rate of horizontal transfer in Borrelia. Trends Microbiol. 9: 344–350 [Google Scholar]
  • Einspanier R, Klotz A, Kraft J, Aulrich K, Poser R, Schwägele F, Jahreis G, Flachowsky G (2001) The fate of forage plant DNA in animals: a collaborative case-study investigating cattle and chicken fed recombinant plant material. European Food Res. Tech. 212: 129–139 [Google Scholar]
  • Eisen JA (2000) Horizontal gene transfer among microbial genomes: new insights from complete genome analysis. Curr. Opin. Genet. Dev. 10: 606–611 [Google Scholar]
  • Escobar-Páramo P, Sabbagh A, Darlu P, Pradillon O, Vaury C, Denamur E, Lecointre G (2004) Decreasing the effects of horizontal gene transfer on bacterial phylogeny: the Escherichia coli case study. Mol. Phylogenet. Evol. 30: 243–250 [Google Scholar]
  • Espinosa-Urgel M (2004) Plant-associated Pseudomonas populations: molecular biology, DNA dynamics, and gene transfer. Plasmid 52: 139–150 [Google Scholar]
  • Falk BW, Bruening G (1994) Will transgenic crops generate new viruses and new diseases? Science 263: 1395–1396 [Google Scholar]
  • Fernandez-Cuartero B, Burgyan J, Aranda MA, Salanki K, Moriones E, Garcia-Arenal F (1994) Increase in the relative fitness of a plant virus RNA associated with its recombinant nature. Virology 203: 373–377 [Google Scholar]
  • Feschotte C, Zhang X, Wessler SR (2002) Miniature inverted-repeat transposable elements and their relationship to established DNA transposons. In Craig NL, Craigie R, Gellert M, Lambowitz AM, eds, Mobile DNA II, American Society for Microbiology, pp 1147–1158 [Google Scholar]
  • Filée J, Forterre P, Sen-Lin T, Laurent J (2002) Evolution of DNA polymerase families: evidences for multiple gene exchange between cellular and viral proteins. J. Mol. Evol. 54: 763–773 [Google Scholar]
  • Fraser C, Hanage WP, Spratt BG (2007) Recombination and the nature of bacterial speciation. Science 315: 476–480 [Google Scholar]
  • Friesen TL, Stuckenbrock EH, Liu Z, Meinhardt S, Ling H, Faris JD, Rasmussen JB, Solomon PS, McDonald BA, Oliver RP (2006) Emergence of a new disease as a result of interspecific virulence gene transfer. Nature Genet. 38: 953–956 [Google Scholar]
  • Frischmuth T, Stanley J (1998) Recombination between viral DNA and the transgenic coat protein gene of African cassava mosaic geminivirus. J. Gen. Virol. 79: 1265–1271 [Google Scholar]
  • Froissart R, Roze D, Uzest M, Galibert L, Blanc S, Michalakis Y (2005) Recombination every day: Abundant recombination in a virus during a single multi-cellular host infection. PLoS Biol. 3: 389–395 [Google Scholar]
  • Fu M, Deng R, Wang J, Wang X (2008) Detection and analysis of horizontal gene transfer in herpesvirus. Virus Res. 131: 65–76 [CrossRef] [PubMed] [Google Scholar]
  • Gal S, Pisan B, Hohn T, Grimsley N, Hohn B (1992) Agroinfection of transgenic plants leads to viable cauliflower mosaic virus by intermolecular recombination. Virology 187: 525–533 [Google Scholar]
  • Garcia-Vallve S, Guzman E, Montero MA, Romeu A (2003) HGT-DB: a database of putative horizontally transferred genes in prokaryotic complete genomes. Nucleic Acids Res. 31: 187–189 [Google Scholar]
  • Gebhard F, Smalla K (1998) Transformation of Acinetobacter sp. strain BD413 by transgenic sugar beet DNA. Appl. Environ. Microbiol. 64: 1550–1554 [Google Scholar]
  • Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the “gene-jockeying” tool. Microbiol. Mol. Biol. Rev. 67: 16–37 [Google Scholar]
  • Gibbs A (1987) Molecular evolution of viruses; “trees”, “clocks” and “modules”. J. Cell Sci. Suppl. 7: 319–337 [Google Scholar]
  • Gibbs MJ, Weiller GF (1999) Evidence that a plant virus switched hosts to infect a vertebrate and then recombined with a vertebrate-infecting virus. Proc. Natl. Acad. Sci. USA 96: 8022–8027 [Google Scholar]
  • Gibbs MJ, Armstrong JS, Gibbs AJ (2001) Recombination in the hemagglutinin gene of the 1918 “Spanish Flu”. Science 293: 1842–1845 [Google Scholar]
  • Gladyshev EA, Meselson M, Arkhipova IR (2008) Massive horizontal gene transfer in bdelloid rotifers. Science 320: 1210–1213 [CrossRef] [PubMed] [Google Scholar]
  • Gogarten JP, Olendzenski L (1999) Orthologs, paralogs and genome comparisons. Curr. Opin. Genet. Dev. 9: 630–636 [Google Scholar]
  • Gogarten JP, Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer. Mol. Biol. Evol. 19: 2226–2238 [Google Scholar]
  • Gomis-Rüth FX, Solà M, de la Cruz F, Coll M (2004) Coupling factors in macromolecular type-IV secretion machineries. Curr. Pharmaceut. Design 10: 1551–1565 [Google Scholar]
  • Gray MW (1993) Origin and evolution of organelle genomes. Curr. Opin. Genet. Dev. 3: 884–890 [Google Scholar]
  • Greene AE, Allison RF (1994) Recombination between viral RNA and transgenic plant transcripts. Science 263: 1423–1425 [Google Scholar]
  • Greene AE, Allison RF (1996) Deletions in the 3' untranslated region of cowpea chlorotic mottle virus transgene reduce recovery of recombinant viruses in transgenic plants. Virology 225: 231–234 [Google Scholar]
  • Grillot-Courvalin C, Goussard S, Courvalin P (2002) Wild-type intracellular bacteria deliver DNA into mammalian cells. Cell. Microbiol. 4: 177–186 [Google Scholar]
  • Grindley ND, Whiteson KL, Rice PA (2006) Mechanisms of site-specific recombination. Ann. Rev. Biochem. 75: 567–605 [Google Scholar]
  • Grohmann E, Muth G, Espinosa M (2003) Conjugative plasmid transfer in gram-positive bacteria. Microbiol. Mol. Biol. Rev. 67: 277–301 [Google Scholar]
  • GTEC (Gene Technology Ethics Committee) (2006) Working paper: ethical issues arising from trans-species gene transfer. Available at http://www.ogtr.gov.au/ pdf/committee/trans-speciesGeneTransfer.pdf (accessed 17 April 2008) [Google Scholar]
  • Guindon S, Perrière G (2001) Intragenomic base content variation is a potential source of biases when searching for horizontally transferred genes. Mol. Biol. Evol. 18: 1838–1840 [Google Scholar]
  • Guljamow A, Jenke-Kodama H, Saumweber H, Quillardet P, Frangeul L, Castets AM, Bouchier C, Tandeau de Marsac N, Dittmann E (2007) Horizontal gene transfer of two cytoskeletal elements from a eukaryote to a cyanobacterium. Curr. Biol. 17: R757–R759 [Google Scholar]
  • Gupta RS, Griffiths E (2002) Critical issues in bacterial phylogeny. Theor. Pop. Biol. 61: 423–434 [Google Scholar]
  • Hacker J, Blum-Oehler G, Mühldorfer I, Tschäpe H (1997) Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol. Microbiol. 23: 1089–1097 [Google Scholar]
  • Hakenbeck R, Balmelle N, Weber B, Gardes C, Keck W, De Saizieu A (2001) Mosaic genes and mosaic chromosomes: intra- and interspecies genomic variation of Streptococcus pneumoniae. Infect. Immun. 69: 2477–2486 [Google Scholar]
  • Hall C, Brachat S, Dietrich FS (2005) Contribution of horizontal gene transfer to the evolution of Saccharomyces cerevisiae. Euk. Cell 4: 1102–1115 [Google Scholar]
  • Hao W, Golding GB (2004) Patterns of bacterial gene movement. Mol. Biol. Evol. 21: 1294–1307 [Google Scholar]
  • Harper G, Osuji JO, Heslop-Harrison JS, Hull R (1999) Integration of banana streak badnavirus into the Musa genome: Molecular and cytogenetic evidence. Virology 255: 207–213 [Google Scholar]
  • Harper G, Hull R, Lockhart B, Olszewski N (2002) Viral sequences integrated into plant genomes. Ann. Rev. Phytopath. 40: 119–136 [Google Scholar]
  • Haupt S, Oparka KJ, Sauer N, Neumann S (2001) Macromolecular trafficking between Nicotiana tabacum and the holoparasite Cuscuta reflexa. J. Exp. Bot. 52: 173–177 [Google Scholar]
  • Heinemann JA, Sprague GF Jr (1989) Bacterial conjugative plasmids mobilize DNA transfer between bacteria and yeast. Nature 340: 205–209 [Google Scholar]
  • Hendrickx L, Hausner M, Wuertz S (2003) Natural genetic transformation in monoculture Acinetobacter sp. strain BD413 biofilms. Appl. Environ. Microbiol. 69: 1721–1727 [Google Scholar]
  • Hendrix RW, Smith MCM, Burns RN, Ford ME, Hatfull GF (1999) Evolutionary relationships among diverse bacteriophages and prophages: All the world's a phage. Proc. Natl. Acad. Sci. USA 96: 2192–2197 [Google Scholar]
  • Heuer H, Smalla K (2007) Horizontal gene transfer between bacteria. Environ. Biosafety. Res. 6: 3–13 [Google Scholar]
  • Hijri M, Sanders IR (2005) Low gene copy number shows that arbuscular mycorrhizal fungi inherit genetically different nuclei. Nature 433: 160–163 [Google Scholar]
  • Hill RA (2005) Conceptualizing risk assessment methodology for genetically modified organisms. Environ. Biosafety Res. 4: 67–70 [Google Scholar]
  • Ho MW, Ryan A, Cummins J (2000) Cauliflower mosaic viral promoter – a recipe for disaster? Microb. Ecol. Health Dis. 11: 194–197 [Google Scholar]
  • Hofmann C, Sambade A, Heinlein M (2007) Plasmodesmata and intercellular transport of viral RNA. Biochem. Soc. Trans. 35: 142–145 [Google Scholar]
  • Homma K, Fukuchi S, Nakamura Y, Gojobori T, Nishikawa K (2007) Gene cluster analysis method identifies horizontally transferred genes with high reliability and indicates that they provide the main mechanism of operon gain in eight species of γ-protobacteria. Mol. Biol. Evol. 24: 808–813 [Google Scholar]
  • Hong SH, Kim TY, Lee SY (2004) Phylogenetic analysis based on genome-scale metabolic pathway reaction content. Appl. Microbiol. Biotechnol. 65: 203–210 [Google Scholar]
  • Hooper SD, Berg OG (2002) Detection of genes with atypical nucleotide sequence in microbial genomes. J. Mol. Evol. 54: 365–375 [Google Scholar]
  • Hotopp JC, Clark ME, Oliveira DC, Foster JM, Fischer P, Torres MC, Giebel JD, Kumar N, Ishmael N, Wang S, Ingram J, Nene RV, Shepard J, Tomkins J, Richards S, Spiro DJ, Ghedin E, Slatko BE, Tettelin H, Werren JH (2007) Widespread lateral gene transfer from intracellular bacteria to multicellular eukaryotes. Science 317: 1753–1756 [Google Scholar]
  • Houck MA, Clark JB, Peterson KR, Kidwell MG (1991) Possible horizontal transfer of Drosophila genes by the mite Proctolaelaps regalis. Science 253: 1125–1128 [Google Scholar]
  • Huang J, Mullapudi N, Sicheritz-Ponten T, Kissinger JC (2004) A first glimpse into the pattern and scale of gene transfer in the Apicomplexa. Int. J. Parasitol. 34 : 265–274 [Google Scholar]
  • Hughes AL, Friedman R (2003) Genome-wide survey for genes horizontally transferred from cellular organisms to baculoviruses. Mol. Biol. Evol. 20: 979–987 [Google Scholar]
  • Hughes AL, Friedman R (2005) Poxvirus genome evolution by gene gain and loss. Mol. Phylogenet. Evol. 35: 186–195 [Google Scholar]
  • Hull R, Covey SN, Dale P (2000) Genetically modified plants and the 35S promoter: assessing the risks and enhancing the debate. Microb. Ecol. Health Dis. 12: 1–5 [Google Scholar]
  • International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409: 860–921 [Google Scholar]
  • Intrieri MC, Buiatti M (2001) The horizontal transfer of Agrobacterium rhizogenes genes and the evolution of the genus Nicotiana. Mol. Phylogenet. Evol. 20: 100–110 [Google Scholar]
  • Jain R, Rivera MC, Moore JE, Lake JA (2003) Horizontal gene transfer accelerates genome innovation and evolution. Mol. Biol. Evol. 20: 1598–1602 [Google Scholar]
  • Jakab G, Vaistij FE, Droz E, Malnoe P (1997) Transgenic plants expressing viral sequences create a favourable environment for recombination between viral sequences. In Tepfer M, Balázs E, eds, Virus-resistant transgenic plants: potential ecological impact, pp 45–51 [Google Scholar]
  • Jennings JC, Albee LD, Kolwyck DC, Surber JB, Taylor ML, Hartnell GF, Lirette RP, Glenn KC (2003a) Attempts to detect transgenic and endogenous plant DNA and transgenic protein in muscle from broilers fed YieldGard Corn Borer Corn. Poult. Sci. 82: 371–380 [Google Scholar]
  • Jennings JC, Kolwyck DC, Kays SB, Whetsell AJ, Surber JB, Cromwell GL, Lirette RP, Glenn KC (2003b) Determining whether transgenic and endogenous plant DNA and transgenic protein are detectable in muscle from swine fed Roundup Ready soybean meal. J. Anim Sci. 81: 1447–1455 [Google Scholar]
  • Jiang SC, Paul JH (1998) Gene transfer by transduction in the marine environment. Appl. Environ. Microbiol. 64: 2780–2787 [Google Scholar]
  • Johnson MD, Oldach D, Delwiche CF, Stoecker DK (2007) Retention of transcriptionally active cryptophyte nuclei by the ciliate Myrionecta rubra. Nature 445: 426–428 [Google Scholar]
  • Jones JG, Gardener S, Simon BM, Pickup RW (1986) Antibiotic resistant bacteria in Windermere and two remote upland tarns in the English Lake District. J. Appl. Bacteriol. 60: 443–453 [Google Scholar]
  • Jordan IK, Rogozin IB, Glazko GV, Koonin EV (2003) Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet. 19: 68–72 [Google Scholar]
  • Kadurugamuwa JL, Beveridge TJ (1997) Natural release of virulence factors in membrane vesicles by Pseudomonas aeruginosa and the effect of aminoglycoside antibiotics on their release. J. Antimicrob. Chemother. 40: 615–621 [CrossRef] [PubMed] [Google Scholar]
  • Kanaya S, Kinouchi M, Abe T, Kudo Y, Yamada Y, Nishi T, Mori H, Ikemura T (2001) Analysis of codon usage diversity of bacterial genes with a self-organizing map (SOM): characterization of horizontally transferred genes with emphasis on the E. coli O157 genome. Gene 276: 89–99 [Google Scholar]
  • Karlin S, Mrazek J, Campbell AM (1998) Codon usages in different gene classes of the Escherichia coli genome. Mol. Microbiol. 29: 1341–1355 [Google Scholar]
  • Kazazian HH Jr (2004) Mobile elements: drivers of genome evolution. Science 303: 1626–1632 [Google Scholar]
  • Keese P, Symons RH (1985) Domains in viroids: evidence of intermolecular RNA rearrangements and their contribution to viroid evolution. Proc. Natl. Acad. Sci. USA 82: 4582–4586 [CrossRef] [Google Scholar]
  • Kharazmi M, Bauer T, Hammes WP, Hertel C (2003) Effect of food processing on the fate of DNA with regard to degradation and transformation capability in Bacillus subtilis. Syst. Appl. Microbiol. 26: 495–501 [Google Scholar]
  • Khatchikian D, Orlich M, Rott R (1989) Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the haemagglutinin gene of an influenza virus. Nature 340: 156–157 [CrossRef] [PubMed] [Google Scholar]
  • Kleter GA, Peijnenburg AA, Aarts HJ (2005) Health considerations regarding horizontal transfer of microbial transgenes present in genetically modified crops. J. Biomed. Biotechnol. 2005: 326–352 [Google Scholar]
  • Knipe DM, Howley PM (2001) Fields Virology. Lippincott Williams & Wilkins, Philadelphia, USA [Google Scholar]
  • Kobayashi I (2001) Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res. 29: 3742–3756 [Google Scholar]
  • Kohli A, Griffiths S, Palacios N, Twyman RM, Vain P, Laurie DA, Christou P (1999) Molecular characterization of transforming plasmid rearrangements in transgenic rice reveals a recombination hotspot in the CaMV 35S promoter and confirms the predominance of microhomology mediated recombination. Plant J. 17: 591–601 [Google Scholar]
  • Koonin EV (2007) The Biological Big Bang model for the major transitions in evolution. Biol. Direct. 2: 21 [Google Scholar]
  • Koonin EV, Makarova KS, Aravind L (2001) Horizontal gene transfer in prokaryotes: quantification and classification. Annu. Rev. Microbiol. 55: 709–742 [Google Scholar]
  • Korbel JO, Snel B, Huynen MA, Bork P (2002) SHOT: a web server for the construction of genome phylogenies. Trends Genet. 18: 158–162 [Google Scholar]
  • Koski LB, Golding GB (2001) The closest BLAST hit is often not the nearest neighbor. J. Mol. Evol. 52: 540–542 [Google Scholar]
  • Koski LB, Morton RA, Golding GB (2001) Codon bias and base composition are poor indicators of horizontally transferred genes. Mol. Biol. Evol. 18: 404–412 [Google Scholar]
  • Kroll JS, Wilks KE, Farrant JL, Langford PR (1998) Natural genetic exchange between Haemophilus and Neisseria: intergeneric transfer of chromosomal genes between major human pathogens. Proc. Natl. Acad. Sci. USA 95: 12381–12385 [Google Scholar]
  • Kunik T, Tzfira T, Kapulnik Y, Gafni Y, Dingwall C, Citovsky V (2001) Genetic transformation of HeLa cells by Agrobacterium. Proc. Natl. Acad. Sci. USA 98: 1871–1876 [Google Scholar]
  • Kunin V, Ouzounis CA (2003) The balance of driving forces during genome evolution in prokaryotes. Genome Res. 13: 1589–1594 [Google Scholar]
  • Kurland CG (2005) What tangled web: barriers to rampant horizontal gene transfer. Bioessays 27: 741–747 [Google Scholar]
  • Kurland CG, Canback B, Berg OG (2003) Horizontal gene transfer: a critical view. Proc. Natl. Acad. Sci. USA 100: 9658–9662 [Google Scholar]
  • Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, Toyoda A, Takami H, Morita H, Sharma VK, Srivastava TP, Taylor TD, Noguchi H, Mori H, Ogura Y, Ehrlich DS, Itoh K, Takagi T, Sakaki Y, Hayashi T, Hattori M (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res. 14: 169–181 [Google Scholar]
  • Lambert KN, Allen KD, Sussex IM (1999) Cloning and characterization of an esophageal-gland-specific chorismate mutase from the phytoparasitic nematode Meloidogyne javanica. Mol. Plant-Microbe Interact. 12: 328–336 [Google Scholar]
  • Lambowitz AM, Zimmerly S (2004) Mobile Group II Introns. Annu. Rev. Genet. 38: 1–35 [Google Scholar]
  • Lang AS, Beatty JT (2001) The gene transfer agent of Rhodobacter capsulatus and “constitutive transduction” in prokaryotes. Arch. Microbiol. 175: 241–249 [Google Scholar]
  • Lawrence JG, Ochman H (1998) Molecular archaeology of the Escherichia coli genome. Proc. Natl. Acad. Sci. USA 95: 9413–9417 [Google Scholar]
  • Lawrence JG, Ochman H (2002) Reconciling the many faces of lateral gene transfer. Trends Microbiol. 10: 1–4 [Google Scholar]
  • Lebrun E, Santini JM, Brugna M, Ducluzeau AL, Ouchane S, Schoepp-Cothenet B, Baymann F, Nitschke W (2006) The rieske protein: A case study on the pitfalls of multiple sequence alignments and phylogenetic reconstruction. Mol. Biol. Evol. 23: 1180–1191 [Google Scholar]
  • Legg JP, Thresh JM (2000) Cassava mosaic virus disease in East Africa: a dynamic disease in a changing environment. Virus Res. 71: 135–149 [Google Scholar]
  • Li S, Nosenko T, Hackett JD, Bhattacharya D (2006) Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates. Mol. Biol. Evol. 23: 663–674 [Google Scholar]
  • Lilley AK, Bailey MJ, Barr M, Kilshaw K, Timms-Wilson TM, Day MJ, Norris SJ, Jones TH, Godfray HCJ (2003) Population dynamics and gene transfer in genetically modified bacteria in a model microcosm. Mol. Ecol. 12: 3097–3107 [Google Scholar]
  • Lindbo JA, Dougherty WG (1992) Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology 189: 725–733 [Google Scholar]
  • Lorenz MG, Wackernagel W (1994) Bacterial gene transfer by natural genetic transformation in the environment. Microbiol. Rev. 58: 563–602 [Google Scholar]
  • Maeda S, Ito M, Ando T, Ishimoto Y, Fujisawa Y, Takahashi H, Matsuda A, Sawamura A, Kato S (2006) Horizontal transfer of nonconjugative plasmids in a colony biofilm of Escherichia coli. FEMS Microbiol. Lett. 255: 115–120 [Google Scholar]
  • Majewski J (2001) Sexual isolation in bacteria. FEMS Microbiol. Lett. 199: 161–169 [Google Scholar]
  • Majewski J, Cohan FM (1999) DNA sequence similarity requirements for interspecific recombination in Bacillus. Genetics 153: 1525–1533 [Google Scholar]
  • Marri PR, Hao W, Golding GB (2007) The role of laterally transferred genes in adaptive evolution. BMC Evol. Biol. 7: 21 [Google Scholar]
  • Marrs B (1974) Genetic recombination in Rhodopseudomonas capsulata. Proc. Natl. Acad. Sci. USA 71: 971–973 [Google Scholar]
  • Martin W (2003) Gene transfer from organelles to the nucleus: frequent and in big chunks. Proc. Natl. Acad. Sci. USA 100: 8612–8614 [Google Scholar]
  • Masuta C, Kuwata S, Matzuzaki T, Takanami Y, Koiwai A (1992) A plant virus satellite RNA exhibits a significant sequence complementarity to a chloroplast tRNA. Nucl. Acids Res. 20: 2885 [Google Scholar]
  • Matic I, Taddei F, Radman M (1996) Genetic barriers among bacteria. Trends Microbiol. 4: 69–72 [Google Scholar]
  • Matsui K, Ishii N, Kawabata Z (2003) Release of extracellular transformable plasmid DNA from Escherichia coli cocultivated with algae. Appl. Environ. Microbiol. 69: 2399–2404 [Google Scholar]
  • Mayo MA, Jolly CA (1991) The 5'-terminal sequence of potato leafroll virus RNA: evidence of recombination between virus and host RNA. J. Gen. Virol. 72: 2591–2595 [Google Scholar]
  • Mazel D, Davies J (1999) Antibiotic resistance in microbes. Cell Mol. Life Sci. 56: 742–754 [Google Scholar]
  • Mazza R, Soave M, Morlacchini M, Piva G, Marocco A (2005) Assessing the transfer of genetically modified DNA from feed to animal tissues. Transgenic Res. 14: 775–784 [Google Scholar]
  • McClure MA (2000) The complexities of genome analysis, the Retroid agent perspective. Bioinformatics 16: 79–95 [Google Scholar]
  • Meibom KL, Blokesch M, Dolganov NA, Wu CY, Schoolnik GK (2005) Chitin induces natural competence in Vibrio cholerae. Science 310: 1775–1777 [Google Scholar]
  • Mel SF, Mekalanos JJ (1996) Modulation of horizontal gene transfer in pathogenic bacteria by in vivo signals. Cell 87: 795–798 [Google Scholar]
  • Mercer DK, Scott KP, Bruce-Johnson WA, Glover LA, Flint HJ (1999) Fate of free DNA and transformation of the oral bacterium Streptococcus gordonii DL1 by plasmid DNA in human saliva. Appl. Environ. Microbiol. 65: 6–10 [Google Scholar]
  • Meyers G, Tautz N, Dubovi EJ, Thiel HJ (1991) Viral cytopathogenicity correlated with integration of ubiquitin-coding sequences. Virology 180: 602–616 [Google Scholar]
  • Michael CA, Gillings MR, Holmes AJ, Hughes L, Andrew NR, Holley MP, Stokes HW (2004) Mobile gene cassettes: a fundamental resource for bacterial evolution. Am. Nat. 164: 1–12 [Google Scholar]
  • Mild M, Esbjörnsson J, Fenyö EM, Medstrand P (2007) Frequent intrapatient recombination between HIV-1 R5 and X4 envelopes: Implications for coreceptor switch. J. Virol. 81: 3369–3376 [Google Scholar]
  • Mira A, Klasson L, Andersson SG (2002) Microbial genome evolution: sources of variability. Curr. Opin. Microbiol. 5: 506–512 [Google Scholar]
  • Mohr KI, Tebbe CC (2007) Field study results on the probability and risk of a horizontal gene transfer from transgenic herbicide-resistant oilseed rape pollen to gut bacteria of bees. Appl. Microbiol. Biotechnol. 75: 573–582 [Google Scholar]
  • Molin S, Tolker-Nielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr. Opin. Biotechnol. 14: 255–261 [Google Scholar]
  • Moran JV, Gilbert N (2002) Mammalian LINE-1 retrotransposons and related elements. In Craig NL, Craigie R, Gellert M, Lambowitz AM, eds, Mobile DNA II, American Society for Microbiology, pp 836–869 [Google Scholar]
  • Mower JP, Stefanovic S, Young GJ, Palmer JD (2004) Plant genetics: gene transfer from parasitic to host plants. Nature 432: 165–166 [Google Scholar]
  • Nagy PD, Bujarski JJ (1996) Homologous RNA recombination in brome mosaic virus: AU-rich sequences decrease the accuracy of crossovers. J. Virol. 70: 415–426 [Google Scholar]
  • Nakamura Y, Itoh T, Matsuda H, Gojobori T (2004) Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nat. Genet. 36: 760–766 [Google Scholar]
  • Nemeth A, Wurz A, Artim L, Charlton S, Dana G, Glenn K, Hunst P, Jennings J, Shilito R, Song P (2004) Sensitive PCR analysis of animal tissue samples for fragments of endogenous and transgenic plant DNA. J. Agric. Food Chem. 52: 6129–6135 [Google Scholar]
  • Nesbø CL, L'Haridon S, Stetter KO, Doolittle WF (2001) Phylogenetic analyses of two “archaeal” genes in Thermotoga maritima reveal multiple transfers between archaea and bacteria. Mol. Biol. Evol. 18: 362–375 [Google Scholar]
  • Netherwood T, Martín-Orúe SM, O'Donnell AG, Gockling S, Graham J, Mathers JC, Gilbert HJ (2004) Assessing the survival of transgenic plant DNA in the human gastrointestinal tract. Nat. Biotechnol. 22: 204–209 [Google Scholar]
  • Nielsen KM (1998) Barriers to horizontal gene transfer by natural transformation in soil bacteria. APMIS 106: 77–84 [Google Scholar]
  • Nielsen KM, Townsend JP (2004) Monitoring and modeling horizontal gene transfer. Nature Biotech. 22: 1110–1114 [Google Scholar]
  • Nielsen KM, van Elsas JD (2001) Stimulatory effects of compounds present in the rhizosphere on natural transformation of Acinetobacter sp. BD413 in soil. Soil Biol. Biochem. 33: 345–357 [Google Scholar]
  • Nielsen KM, Bones AM, Smalla K, van Elsas JD (1998) Horizontal gene transfer from transgenic plants to terristrial bacteria – a rare event? FEMS Microbiol. Rev. 22: 79–103 [PubMed] [Google Scholar]
  • Nielsen KM, van Elsas JD, Smalla K (2000a) Transformation of Acinetobacter sp. strain BD413 (pFGΔnptII) with transgenic plant DNA in soil microcosms and effects of kanamycin selection of transformants. Appl. Environ. Microbiol. 66: 1237–1242 [CrossRef] [PubMed] [Google Scholar]
  • Nielsen KM, Smalla K, van Elsas JD (2000b) Natural transformation of Acinetobacter sp. strain BD413 with cell lysates of Acinetobacter sp., Pseudomonas fluorescens, and Burkholderia cepacia in soil microcosms. Appl. Environ. Microbiol. 66: 206–212 [Google Scholar]
  • Nielsen KM, Johnsen PJ, Bensasson D, Daffonchio D (2007) Release and persistence of extracellular DNA in the environment. Environ. Biosafety. Res. 6: 37–53 [Google Scholar]
  • Nosenko T, Bhattacharya D (2007) Horizontal gene transfer in chromalveolates. BMC Evol. Biol. 7: 173 [Google Scholar]
  • Novichkov PS, Omelchenko MV, Gelfand MS, Mironov AA, Wolf YI, Koonin EV (2004) Genome-wide molecular clock and horizontal gene transfer in bacterial evolution. J. Bacteriol. 186: 6575–6585 [Google Scholar]
  • Ochman H, Lawrence JG, Grolsman E (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299–304 [Google Scholar]
  • OGTR (Office of the Gene Technology Regulator) (2007) Risk Analysis Framework, Australian Government, Canberra, ACT. Available at http://www.ogtr.gov.au/ pdf/public/raffinal3.pdf (accessed 17 April 2008) [Google Scholar]
  • Ohshima K, Tomitaka Y, Wood JT, Minematsu Y, Kajiyama H, Tomimura K, Gibbs AJ (2007) Patterns of recombination in turnip mosaic virus genomic sequences indicate hotspots of recombination. J. Gen. Virol. 88: 298–315 [Google Scholar]
  • Orgel LE, Crick FH (1980) Selfish DNA: the ultimate parasite. Nature 284: 604–607 [Google Scholar]
  • Osborn AM, Böltner D (2002) When phage, plasmids, and transposons collide: genomic islands, and conjugative- and mobilizable-transposons as a mosaic continuum. Plasmid 48: 202–212 [Google Scholar]
  • Pääbo S, Poinar H, Serre D, Jaenicke-Despres V, Hebler J, Rohland N, Kuch M, Krause J, Vigilant L, Hofreiter M (2004) Genetic analyses from ancient DNA. Annu. Rev. Genet. 38: 645–679 [Google Scholar]
  • Pallen MJ, Wren BW (2007) Bacterial pathogenomics. Nature 449: 835–842 [Google Scholar]
  • Parkinson J, Blaxter M (2003) SimiTri-visualizing similarity relationships for groups of sequences. Bioinformatics 19: 390–395 [Google Scholar]
  • Pastwa E, Błasiak J (2007) Non-homologous DNA end joining. Acta Biochim. Pol. 50: 891–908 [Google Scholar]
  • Paulsen IT, Banerjei L, Myers GS, Nelson KE, Seshadri R, Read TD, Fouts DE, Eisen JA, Gill SR, Heidelberg JF, Tettelin H, Dodson RJ, Umayam L, Brinkac L, Beanan M, Daugherty S, DeBoy RT, Durkin S, Kolonay J, Madupu R, Nelson W, Vamathevan J, Tran B, Upton J, Hansen T, Shetty, J, Khouri H, Utterback T, Radune D, Ketchum KA, Dougherty BA, Fraser CM (2003) Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Science 299: 2071–2074 [Google Scholar]
  • Peaston AE, Evsikov AV, Graber JH, de Vries WN, Holbrook AE, Solter D, Knowles BB (2004) Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev. Cell 7: 597–606 [Google Scholar]
  • Pedulla ML, Ford ME, Houtz JM, Karthikeyan T, Wadsworth C, Lewis JA, Jacobs-Sera D, Falbo J, Gross J, Pannunzio NR, Brucker W, Kumar V, Kandasamy J, Keenan L, Bardarov S, Kriako J, Lawrence JG, Jacobs WR Jr, Hendrix RW, Hatfull GF (2003) Origins of highly mosaic mycobacteriophage genomes. Cell 113: 171–182 [Google Scholar]
  • Perumbakkam S, Hess TF, Crawford RL (2006) A bioremediation approach using natural transformation in pure-culture and mixed-population biofilms. Biodegradation 17: 545–557 [Google Scholar]
  • Peterson-Burch BD, Voytas DF (2002) Genes of the Pseudoviridae (Ty1/copia retrotransposons). Mol. Biol. Evol. 19: 1832–1845 [Google Scholar]
  • Phale PS, Basu A, Majhi PD, Deveryshetty J, Vamsee-Krishna C, Shrivastava R (2007) Metabolic diversity in bacterial degradation of aromatic compounds. OMICS 11: 252–279 [Google Scholar]
  • Phipps RH, Deaville ER, Maddison BC (2003) Detection of transgenic and endogenous plant DNA in rumen fluid, duodenal digesta, milk, blood, and feces of lactating dairy cows. J. Dairy Sci. 86: 4070–4078 [Google Scholar]
  • Pierce SK, Massey SE, Hanten JJ, Curtis NE (2003) Horizontal transfer of functional nuclear genes between multicellular organisms. Biol. Bull. 204: 237–240 [Google Scholar]
  • Piers KL, Heath JD, Liang X, Stephens KM, Nester EW (1996) Agrobacterium tumefaciens-mediated transformation of yeast. Proc. Natl. Acad. Sci. USA 93: 1613–1618 [Google Scholar]
  • Pilhofer M, Bauer AP, Schrallhammer M, Richter L, Ludwig W, Schleifer KH, Petroni G (2007) Characterization of bacterial operons consisting of two tubulins and a kinesin-like gene by the novel Two-Step Gene Walking method. Nucleic Acids Res. 35: e135 [Google Scholar]
  • Piskurek O, Okada N (2007) Poxviruses as possible vectors for horizontal transfer of retroposons from reptiles to mammals. Proc. Natl. Acad. Sci. USA 104: 12046–12051 [Google Scholar]
  • Pita JS, Fondong VN, Sangare A, Otim-Nape GW, Ogwal S, Fauquet CM (2001) Recombination, pseudorecombination and synergism of geminiviruses are determinant keys to the epidemic of severe cassava mosaic disease in Uganda. J. Gen. Virol. 82: 655–665 [Google Scholar]
  • Pontiroli A, Simonet P, Frostegard A, Vogel TM, Monier JM (2007) Fate of transgenic plant DNA in the environment. Environ. Biosafety. Res. 6: 15–35 [Google Scholar]
  • Poulter RT, Goodwin TJ, Butler MI (2007) The nuclear-encoded inteins of fungi. Fungal Genet. Biol. 44: 153–179 [Google Scholar]
  • Prescott VE, Campbell PM, Moore A, Mattes J, Rothenberg ME, Foster PS, Higgins TJ, Hogan SP (2005) Transgenic expression of bean alpha-amylase inhibitor in peas results in altered structure and immunogenicity. J. Agric. Food Chem. 53: 9023–9030 [Google Scholar]
  • Ragan MA (2001) Detection of lateral gene transfer among microbial genomes. Curr. Opin. Genet. Dev. 11: 620–626 [Google Scholar]
  • Ragan MA, Charlebois, RL (2002) Distributional profiles of homologous open reading frames among bacterial phyla: implications for vertical and lateral transmission. Int. J. Syst. Evol. Microbiol. 52: 777–787 [Google Scholar]
  • Ragan MA, Harlo TJ, Beik RG (2006) Do different surrogate methods detect lateral genetic transfer events of different relative ages? Trends Microbiol. 14: 4–8 [Google Scholar]
  • Raja R, Wisle JW, Bell CE (2006) Probing the DNA sequence specificity of Escherichia coli RECA protein. Nucl. Acids Res. 34: 2463–2471 [Google Scholar]
  • Raoult D, Audic S, Robert C, Abergel C, Renesto P, Ogata H, La Scola B, Suzan M, Claverie JM (2004) The 1.2-megabase genome sequence of Mimivirus. Science 306: 1344–1350 [Google Scholar]
  • Rekab D, Carraro L, Schneider B, Seemller E, Chen J, Chang CJ, Locci R, Firrao G (1999) Geminivirus-related extrachromosomal DNAs of the X-clade phytoplasmas share high sequence similarity. Microbiology 145: 1453–1459 [Google Scholar]
  • Rest JS, Mindell DP (2003) Retroids in archaea: phylogeny and lateral origins. Mol. Biol. Evol. 20: 1134–1142 [Google Scholar]
  • Revers F, Le Gall O, Candresse T, Le Romancer M, Dunez J (1996) Frequent occurrence of recombinant potyvirus isolates. J. Gen. Virol. 77: 1953–1965 [Google Scholar]
  • Rezaian MA (1990) Australian grapevine viroid - evidence for extensive recombination between viroids. Nucleic Acids Res. 18: 1813–1818 [Google Scholar]
  • Rizzi A, Pontiroli A, Brusetti L, Borin S, Sorlini C, Abruzzese A, Sacchi GA, Vogel TM, Simonet P, Bazzicalupo M, Nielsen KM, Monier JM, Daffonchio D (2008) Strategy for in situ detection of natural transformation-based horizontal gene transfer events. Appl. Environ. Microbiol. 74: 1250–1254 [Google Scholar]
  • Rogers MB, Patron NJ, Keeling PJ (2007) Horizontal transfer of a eukaryotic plastid-targeted protein gene to cyanobacteria. BMC Biol. 5: 26–33 [Google Scholar]
  • Rokyta DR, Burch CL, Caudie SB, Wichman HA (2006) Horizontal gene transfer and the evolution of microvirid coliphage genomes. J. Bacteriol. 188: 1134–1142 [Google Scholar]
  • Ronchel MC, Ramos-Diaz MA, Ramos JL (2000) Retrotransfer of DNA in the rhizosphere. Environ. Microbiol. 2: 319–323 [Google Scholar]
  • Rosewich UL, Kistler HC (2000) Role of horizontal gene transfer in the evolution of fungi. Ann. Rev. Phytopath. 38: 325–363 [Google Scholar]
  • Rossi F, Morlacchini M, Fusconi G, Pietri A, Mazza R, Piva G (2005) Effect of Bt corn on broiler growth performance and fate of feed-derived DNA in the digestive tract. Poult. Sci. 84: 1022–1030 [Google Scholar]
  • Rowe-Magnus DA, Mazel D (2001) Integrons: natural tools for bacterial genome evolution. Curr. Opin. Microbiol. 4: 565–569 [Google Scholar]
  • Sandberg R, Winberg G, Branden CI, Kaske A, Ernberg I, Coster J (2001) Capturing whole-genome characteristics in short sequences using a naive Bayesian classifier. Genome Res. 11: 1404–1409 [Google Scholar]
  • Sander M, Schmieger H (2001) Method for host-independent detection of generalized transducing bacteriophages in natural habitats. Appl. Environ. Microbiol. 67: 1490–1493 [Google Scholar]
  • Sandford JC, Johnston SA (1985) The concept of parasite-derived resistance – deriving resistance genes from the parasite's own genome. J. Theor. Biol. 113: 395–405 [Google Scholar]
  • Schoelz JE, Wintermantel WM (1993) Expansion of viral host range through complementation and recombination in transgenic plants. Plant Cell 5: 1669–1679 [Google Scholar]
  • Sharma R, Damgaard D, Alexander TW, Dugan ME, Aalhus JL, Stanford K, McAllister TA (2006) Detection of transgenic and endogenous plant DNA in digesta and tissues of sheep and pigs fed Roundup Ready canola meal. J. Agric. Food Chem. 54: 1699–1709 [Google Scholar]
  • Simpson DJ, Fry JC, Rogers HJ, Day MJ (2007) Transformation of Acinetobacter baylyi in non-sterile soil using recombinant plant nuclear DNA. Environ. Biosafety. Res. 6: 101–112 [Google Scholar]
  • Smith MW, Feng DF, Doolittle RF (1992) Evolution by acquisition: The case for horizontal gene transfers. Trends Biochem. Sci. 17: 489–493 [Google Scholar]
  • Snyder LA, McGowan S, Rogers M, Duro E, O'Farrell E, Saunders NJ (2007) The repertoire of minimal mobile elements in the Neisseria species and evidence that these are involved in horizontal gene transfer in other bacteria. Mol. Biol. Evol. 24: 2802–2815 [Google Scholar]
  • Sorek R, Zhu Y, Creevey CJ, Francino MP, Bork P, Rubin EM (2007) Genome-wide experimental determination of barriers to horizontal gene transfer. Science 318: 1449–1452 [Google Scholar]
  • Sørensen SJ, Bailey M, Hansen LH, Kroer N, Wuertz S (2005) Studying plasmid horizontal transfer in situ: a critical review. Nat. Rev. Microbiol. 3: 700–710 [Google Scholar]
  • Souza V, Travisano M, Turner PE, Eguiarte LE (2002) Does experimental evolution reflect patterns in natural populations? E. coli strains from long-term studies compared with wild isolates. Antonie Leeuwenhoek 81: 143–153 [Google Scholar]
  • Suzuki K, Yamashita I, Tanaka N (2002) Tobacco plants were transformed by Agrobacterium rhizogenes infection during their evolution. Plant J. 32: 775–787 [Google Scholar]
  • Syvanen M (1994) Horizontal gene transfer: evidence and possible consequences. Annu. Rev. Genet. 28: 237–261 [Google Scholar]
  • Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl. Environ. Microbiol. 71: 8500–8505 [Google Scholar]
  • Takeshita M, Suzuki M, Takanami Y (2001) Combination of amino acids in the 3a protein and the coat protein of cucumber mosaic virus determines symptom expression and viral spread in bottle gourd. Arch. Virol. 146: 697–711 [Google Scholar]
  • Tan Z, Wada Y, Chen J, Ohshima K (2004) Inter- and intralineage recombinants are common in natural populations of Turnip mosaic virus. J. Gen. Virol. 85: 2683–2696 [Google Scholar]
  • Taubenberger JK (2006) The origin and virulence of the 1918 “Spanish” influenza virus. Proc. Am. Philos. Soc. 150: 86–112 [Google Scholar]
  • Thomas CM, Nielsen KM (2005) Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nature Rev. Microbiol. 3: 711–721 [Google Scholar]
  • Thomason B, Read TD (2006) Shuffling bacterial metabolomes. Genome Biol. 7: 204 [Google Scholar]
  • Tony MA, Butschke A, Broll H, Grohmann L, Zagon J, Halle I, Danicke S, Schauzu M, Hafez HM, Flachowsky G (2003) Safety assessment of Bt 176 maize in broiler nutrition: degradation of maize-DNA and its metabolic fate. Arch. Tierernahr. 57: 235–252 [Google Scholar]
  • Touchon M, Rocha EPC (2007) Causes of insertion sequences abundance in prokaryotic genomes. Mol. Biol. Evol. 24: 969–981 [Google Scholar]
  • Tsirigos A, Rigoutsos I (2005) A new computational method for the detection of horizontal gene transfer events. Nucleic Acids Res. 33: 922–933 [Google Scholar]
  • Turturo C, Friscina A, Gaubert S, Jacquemond M, Thompson JR, Tepfer M (2008) Evaluation of potential risks associated with recombination in transgenic plants expressing viral sequences. J. Gen. Virol. 89: 327–335 [Google Scholar]
  • Tzfira T, Li J, Lacroix B, Citovsky V (2004) Agrobacterium T-DNA integration: molecules and models. Trends Genet. 20: 375–383 [Google Scholar]
  • Ueno R, Huss VA, Urano N, Watabe S (2007) Direct evidence for redundant segmental replacement between multiple 18S rRNA genes in a single Prototheca strain. Microbiology 153: 3879–3893 [Google Scholar]
  • USEPA (United States Environmental Protection Agency) (1998) Framework for Ecological Risk Assessment, EPA Office of Research and Development, National Center for Environmental Assessment, Washington Office, Washinton, D.C. [Google Scholar]
  • van den Eede G, Aarts H, Buhk HJ, Corthier G, Flint HJ, Hammes W, Jacobsen B, Midtvedt T, van der Vossen, von Wright A, Wackernagel W, Wilcks A (2004) The relevance of gene transfer to the safety of food and feed derived from genetically modified (GM) plants. Food Chem. Toxicol. 42: 1127–1156 [Google Scholar]
  • van Elsas JD, Bailey MJ (2002) The ecology of transfer of mobile genetic elements. FEMS Microbiol. Ecol. 42: 187–197 [PubMed] [Google Scholar]
  • van Elsas JD, Turner S, Bailey MJ (2003) Horizontal gene transfer in the phytosphere. New Phytol. 157: 525–537 [CrossRef] [Google Scholar]
  • Vera A, Daros JA, Flores R, Hernandez C (2000) The DNA of a plant retroviroid-like element is fused to different sites in the genome of a plant pararetrovirus and shows multiple forms with sequence deletions. J. Virol. 74: 10390–10400 [Google Scholar]
  • Vergin KL, Tripp HJ, Wilhelm LJ, Denver DR, Rappé MS, Giovannoni SJ (2007) High intraspecific recombination rate in a native population of Candidatus pelagibacter ubique (SAR11). Environ. Microbiol. 9: 2430–2440 [Google Scholar]
  • Vives MC, Rubio L, Sambade A, Mirkov TE, Moreno P, Guerri J (2005) Evidence of multiple recombination events between two RNA sequence variants within a Citrus tristeza isolate. Virology 331: 232–237 [Google Scholar]
  • Vlassov V, Laktionov PP, Rykova EY (2007) Extracellular nucleic acids. Bioessays 29: 654–667 [Google Scholar]
  • Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28: 127–181 [Google Scholar]
  • Weinbauer MG, Rassoulzadegan F (2004) Are viruses driving microbial diversification and diversity? Environ. Microbiol. 6: 1–11 [Google Scholar]
  • Welch RA, Burland V, Plunkett G III, Redford P, Roesch P, Rasko D, Buckles EL, Liou SR, Boutin A, Hackett J, Stroud D, Mayhew GF, Rose DJ, Zhou S, Schwartz DC, Perna NT, Mobley HL, Donnenberg MS, Blattner FR (2002) Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA 99: 17020–17024 [Google Scholar]
  • Weller GR, Kysela B, Roy R, Tonkin LM, Scanlan E, Della M, Devine SK, Day JP, Wilkinson A, d'Adda di Fagagna F, Devine KM, Bowater RP, Jeggo PA, Jackson SP, Doherty AJ (2002) Identification of a DNA nonhomologous end-joining complex in bacteria. Science 297: 1686–1689 [Google Scholar]
  • Wenzl P, Wong L, Kwang-won K, Jefferson RA (2005) A functional screen identifies lateral transfer of β-glucuronidase (gus) from bacteria to fungi. Mol. Biol. Evol. 22: 308–316 [Google Scholar]
  • White FF, Garfinkel DJ, Huffman GA, Gordon MP, Nester EW (1983) Sequences homologous to Agrobacterium rhizogenes T-DNA in the genomes of uninfected plants. Nature 301: 348–350 [Google Scholar]
  • Whitelaw CA, Barbazuk WB, Pertea G, Chan AP, Cheung F, Lee Y, Zheng L, van Heeringen S, Karamycheva S, Bennetzen JL, SanMiguel P, Lakey N, Bedell J, Yuan Y, Budiman MA, Resnick A, Van Aken S, Utterback T, Riedmuller S, Williams M, Feldblyum T, Schubert K, Beachy R, Fraser CM, Quackenbush J (2003) Enrichment of gene-coding sequences in maize by genome filtration. Science 302: 2118–2120 [Google Scholar]
  • Wiedemann S, Lutz B, Kurtz H, Schwarz FJ, Albrecht C (2006) In situ studies on the time-dependent degradation of recombinant corn DNA and protein in the bovine rumen. J. Anim Sci. 84: 135–144 [Google Scholar]
  • Wintermantel WM, Schoelz JE (1996) Isolation of recombinant viruses between cauliflower mosaic virus and a viral gene in transgenic plants under conditions of moderate selection pressure. Virology 223: 156–164 [Google Scholar]
  • Woese CR (2004) A new biology for a new century. Microbiol. Mol. Biol. Rev. 68: 173–186 [Google Scholar]
  • Wolska KI (2003) Horizontal DNA transfer between bacteria in the environment. Acta Microbiol. Pol. 52: 233–243 [Google Scholar]
  • Worobey M, Holmes EC (1999) Evolutionary aspects of recombination in RNA viruses. J. Gen. Virol. 80: 2535–2543 [Google Scholar]
  • Wuertz S, Okabe S, Hausner M (2004) Microbial communities and their interactions in biofilm systems: an overview. Water Sci. Technol. 49: 327–336 [Google Scholar]
  • Xu J, Mahowald MA, Ley RE, Lozupone CA, Hamady M, Martens EC, Henrissat B, Coutinho PM, Minx P, Latreille P, Cordum H, Van Brunt A, Kim K, Fulton RS, Fulton LA, Clifton SW, Wilson RK, Knight RD, Gordon JI (2007) Evolution of symbiotic bacteria in the distal human intestine. PLoS Biol. 5: e156 [Google Scholar]
  • Yamanaka K, Shimamoto T, Inouye S, Inouye M (2002) Retrons. In Craig NL, Craigie R, Gellert M, Lambowitz AM, eds, Mobile DNA II, American Society for Microbiology, pp 784–795 [Google Scholar]
  • Yap WH, Zhang Z, Wang Y (1999) Distinct types of rRNA operons exist in the genome of the actinomycete Thermomonospora chromogena and evidence for horizontal transfer of an entire rRNA operon. J. Bacteriol. 181: 5201–5209 [Google Scholar]
  • Yaron S, Kolling GL, Simon L, Matthews KR (2000) Vesicle-mediated transfer of virulence genes from Escherichia coli O157:H7 to other enteric bacteria. Appl. Environ. Microbiol. 66: 4414–4420 [Google Scholar]
  • Yin Y, Fischer D (2006) On the origin of microbial ORFans: quantifying the strength of the evidence for viral lateral transfer. BMC Evol. Biol. 6: 63 [Google Scholar]
  • Zaneveld JR, Nemergut DR, Knight R (2008) Are all horizontal gene transfers created equal? Prospects for mechanism-based studies of HGT patterns. Microbiology 154: 1–15 [Google Scholar]
  • Zeidner G, Bielawski JP, Shmoish M, Scanlan DJ, Sabehi G, Béjà O (2005) Potential photosynthesis gene recombination between Prochlorococcus and Synechococcus via viral intermediates. Environ. Microbiol. 7: 1505–1513 [Google Scholar]
  • Zhaxybayeva O, Nesbø CL, Doolittle WF (2007) Systematic overestimation of gene gain through false diagnosis of gene absence. Genome Biol. 8: 402–406 [Google Scholar]
  • Zhou X, Liu Y, Calvert L, Munoz C, Otim-Nape GW, Robinson DJ, Harrison BD (1997) Evidence that DNA-A of a geminivirus associated with severe cassava mosaic disease in Uganda has arisen by interspecific recombination. J. Gen. Virol. 78: 2101–2111 [Google Scholar]
  • Zupan J, Muth TR, Draper O, Zambryski P (2000) The transfer of DNA from Agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J. 23: 11–28 [Google Scholar]