Free Access
Environ. Biosafety Res.
Volume 6, Number 4, October-December 2007
Page(s) 259 - 270
Published online 20 December 2007
  • Al-Kaff NS, Covey SN, Kreike MM, Page AM, Pinder R, Dale PJ (1998) Transcriptional and posttranscriptional gene silencing in response to a pathogen. Science 279: 2113–2115 [CrossRef] [PubMed] [Google Scholar]
  • Al-Kaff NS, Kreike MM, Covey SN, Pitcher R, Page AM, Dale PJ (2000) Plants rendered herbicide-susceptible by cauliflower mosaic virus-elicited suppression of a 35S promoter-regulated transgene. Nature Biotechnol. 18: 995–999 [Google Scholar]
  • Assaad FF, Signer ER (1990) Cauliflower mosaic virus P35S promoter activity in Escherichia coli. Mol. Gen. Genet. 223: 517–520 [PubMed] [Google Scholar]
  • Ballas N, Broido S, Soreq H, Loyter A (1989) Efficient functioning of plant promoters and poly(A) sites in Xenopus oocytes. Nucleic Acids Res. 17: 7891–7903 [CrossRef] [PubMed] [Google Scholar]
  • Baulcombe DC, Saunders GR, Bevan MW, Mayo MA, Harrison BD (1986) Expression of biologically active viral satellite RNA from the nuclear genome of transformed plants. Nature 321: 446–449 [CrossRef] [Google Scholar]
  • Bevan MW, Mason SE, Goelet P (1985) Expression of tobacco mosaic virus coat protein by the cauliflower mosaic virus promoter in plants transformed by Agrobacterium. EMBO J. 4: 1921–1926 [PubMed] [Google Scholar]
  • Cullen DW, Lees AK, Toth IK, Duncan JM (2001) Conventional PCR and real-time quantitative PCR detection of Helminthosporium solani in soil and on potato tubers. Eur. J. Plant Pathol. 107: 387–398 [CrossRef] [Google Scholar]
  • Dale PJ, Al-Kaff NS (2006) [Google Scholar]
  • Franck A, Guilley H, Jonard G, Richards K, Hirth L (1980) Nucleotide sequence of cauliflower mosaic virus. Cell 21: 285–294 [CrossRef] [PubMed] [Google Scholar]
  • Gal S, Pisan B, Hohn T, Grimsley N, Hohn B (1992) Agroinfection of transgenic plants leads to viable cauliflower mosaic virus by intermolecular recombination. Virology 187: 525–533 [CrossRef] [PubMed] [Google Scholar]
  • Goldberg K-B, Kiernan J, Shepherd RJ (1991) A disease syndrome associated with expression of gene VI of caulimoviruses may be a nonhost reaction. Mol. Plant-Microbe Interact. 4: 182–189 [CrossRef] [Google Scholar]
  • Gracia O, Shepherd RJ (1985) Cauliflower mosaic virus in the nucleus of Nicotiana. Virology 146: 141–145 [CrossRef] [PubMed] [Google Scholar]
  • Guilley H, Dudley RK, Jonard G, Balázs E, Richards KE (1982) Transcription of cauliflower mosaic virus DNA: Detection of promoter sequences, and characterization of transcripts. Cell 30: 763–773 [CrossRef] [PubMed] [Google Scholar]
  • Halfhill MD, Richards HA, Mabon SA, Stewart Jr CN (2001) Expression of GFP and Bt genes in Brassica napus and hybridization with Brassica rapa. Theor. Appl. Genet. 103: 659–667 [CrossRef] [Google Scholar]
  • Harper BK, Stewart Jr CN (2000) Patterns of green fluorescent protein expression in transgenic plants. Plant Mol. Biol. Rep. 18: 121a–141i [Google Scholar]
  • Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Natl. Acad. Sci USA 94: 2122–2127 [Google Scholar]
  • Ho MW, Ryan A, Cummins J (1999) Cauliflower mosaic viral promoter - a recipe for disaster? Microb. Ecol. Health Dis. 11: 194–197 [Google Scholar]
  • Ho MW, Ryan A, Cummins J (2000) Hazards of transgenic plants containing the cauliflower mosaic virus viral promoter. Microb. Ecol. Health Dis. 12: 6–11 [Google Scholar]
  • Hull R (1984) Caulimovirus group. In CMI/AAB Description of Plant Viruses No. 295. Unwin Bros. Ltd., Old Woking, Surrey, UK [Google Scholar]
  • Hull R, Covey SN, Dale P (2000) Genetically modified plants and the 35S promoter: assessing the risks and enhancing the debate. Microb. Ecol. Health Dis. 12: 1–5 [Google Scholar]
  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: Formula -glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3907 [PubMed] [Google Scholar]
  • Love AJ, Laval V, Geri C, Laird J, Tomos AD, Hooks MA, Milner JJ (2007) Components of Arabidopsis defense- and ethylene-signaling pathways regulate susceptibility to Cauliflower mosaic virus by restricting long-distance movement. Mol. Plant-Microbe Interact. 20: 659–670 [Google Scholar]
  • Mitsuhara I, Ugaki M, Hirochika H, Ohshima M, Murakami T, Gotoh Y, Katayose Y, Nakamura S, Honkura R, Nishimiya S, Ueno K, Mochizuki A, Tanimoto H, Tsugawa H, Otsuki Y, Ohashi Y (1996) Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants. Plant Cell Physiol. 37: 49–59 [PubMed] [Google Scholar]
  • Morel JB, Tepfer M (2000) Pour une évaluation scientifique des risques : le cas du promoteur 35S. Biofutur 201: 32–35 [CrossRef] [Google Scholar]
  • Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313: 810–812 [CrossRef] [PubMed] [Google Scholar]
  • Ow DW, Jacobs JD, Howell SH (1987) Functional regions of the cauliflower mosaic virus 35S RNA promoter determined by the use of the firefly luciferase gene as a reporter of promoter activity. Proc. Natl. Acad. Sci. USA 84: 4870–4874 [CrossRef] [Google Scholar]
  • Pobjecky N, Rosenberg GH, Dinter-Gottlieb G, Kaufer D (1990) Expression of the beta-glucuronidase gene under the control of the CaMV 35S promoter in Schizosacharomyces pombe. Mol. Gen. Genet. 220: 314–316 [PubMed] [Google Scholar]
  • Ruiz MT, Voinnet O, Baulcombe DC (1998) Initiation and maintenance of virus-induced gene silencing. Plant Cell 10: 937–946 [CrossRef] [PubMed] [Google Scholar]
  • Rüth J, Hirt H, Schweyen RJ (1992) The cauliflower mosaic virus 35S promoter is regulated by cAMP in Saccharomyces cerevisiae. Mol. Gen. Genet. 235: 365–372 [CrossRef] [PubMed] [Google Scholar]
  • Rüth J, Schweyen RJ, Hirt H (1994) The plant transcription factor TGA1 stimulates expression of the CaMV 35S promoter in Saccharomyces cerevisiae. Plant Mol. Biol. 25: 323–328 [CrossRef] [PubMed] [Google Scholar]
  • Schoelz JE (2006) Viral determinants of resistance versus susceptibility. In Loebenstein G, Carr JP, eds, Natural Resistance Mechanisms of Plants to Viruses, Springer, The Netherlands, pp 13–33 [Google Scholar]
  • Schoelz JE, Wintermantel WM (1993) Expansion of viral host range through complementation and recombination in transgenic plants. Plant Cell 5: 1669–1679 [CrossRef] [PubMed] [Google Scholar]
  • Schoelz JE, Shepherd RJ, Daubert SD (1986a) Region VI of cauliflower mosaic virus encodes a host range determinant. J. Mol. Cell Biol. 6: 2632–2637 [Google Scholar]
  • Schoelz JE, Shepherd RJ, Richins DR (1986b) Properties of an unusual strain of cauliflower mosaic virus. Phytopathology 76: 451–454 [CrossRef] [Google Scholar]
  • Sun L, Cai H, Xu W, Hu Y, Lin Z (2002) CaMV 35S promoter directs beta-glucuronidase expression in Gonoderma lucidum and Pleurotus citrinopileatus. Mol. Biotechnol. 20: 239–244 [CrossRef] [PubMed] [Google Scholar]
  • Tepfer M, Gaubert S, Leroux-Coyau M, Prince S, Houdebine LM (2004) Transient expression in mammalian cells of transgenes transcribed from the Cauliflower mosaic virus 35S promoter. Environ. Biosafety Res. 3: 91–97 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Vlasák J, Šmahel M, Pavlik A, Pavingerová D, Břiza J (2003) Comparison of hCMV intermediate early and CaMV 35S promoters in both plant and human cells. J. Biotechnol. 103: 197–202 [CrossRef] [PubMed] [Google Scholar]
  • Yu W, Murfett J, Schoelz JE (2003) Differential induction of symptoms in Arabidopsis by P6 of Cauliflower mosaic virus. Mol. Plant-Microbe Interact. 16: 35–42 [CrossRef] [Google Scholar]