Free Access
Issue
Environ. Biosafety Res.
Volume 6, Number 4, October-December 2007
Page(s) 223 - 235
DOI https://doi.org/10.1051/ebr:2007033
Published online 28 November 2007
  • ACRE (2004) Advice on scientific issues concerning the proposed regime for the co-existence of GM and non-GM crops, p 6. U.K. Advisory Committee on Releases to the Environment, Department for Environment, Food and Rural Affairs [Google Scholar]
  • Andersen NS, Siegismund HR, Meyer V, Jorgensen RB (2005) Low level of gene flow from cultivated beets (Beta vulgaris L. ssp. vulgaris) into Danish populations of sea beet (Beta vulgaris L. ssp. maritima (L.) Arcangeli). Mol. Ecol. 14: 1391–1405 [CrossRef] [PubMed] [Google Scholar]
  • Celis C, Scurrah M, Cowgill S, Chumbiauca S, Green J, Franco J, Main G, Kiezebrink D, Visser RGF, Atkinson HJ (2004) Environmental biosafety and transgenic potato in a centre of diversity for this crop. Nature 432: 222–225 [CrossRef] [PubMed] [Google Scholar]
  • Chen LJ, Lee DS, Song ZP, Suh HS, Lu B-R (2004) Gene flow from cultivated rice (Oryza sativa) to its weedy and wild relatives. Ann. Bot. 93: 67–73 [CrossRef] [PubMed] [Google Scholar]
  • Conner AJ (1993) Monitoring “escapes” from field trials of transgenic potatoes: a basis for assessing environmental risks. In Seminar on Scientific Approaches for the Assessment of Research Trials with Genetically Modified Plants, OECD, Paris, pp 34–40 [Google Scholar]
  • Conner AJ, Dale PJ (1996) Reconsideration of pollen dispersal data form field trials of transgenic potatoes. Theor. Appl. Genet. 92: 505–508 [CrossRef] [PubMed] [Google Scholar]
  • Desplanque B, Boudry P, Broomberg K, Saumitou- Laprade P, Cuguen J, Van Dijk H (1999) Genetic diversity and gene flow between wild, cultivated and weedy forms of Beta vulgaris L. (Chenopodiaceae), assessed by RFLP and microsatellite markers. Theor. Appl. Genet. 98: 1194–1201 [CrossRef] [Google Scholar]
  • Eastham K, Sweet J (2002) Genetically modified organisms (GMOs): The significance of gene flow through pollen transfer, European Environment Agency, Copenhagen, pp 1–75 [Google Scholar]
  • Fernandez-Cornejo J, Daberkow S, McBride WD (2001) Decomposing the size effect on the adoption of innovations: Agrobiotechnology and precision agriculture. AgBioForum 4: 124–136, http://www.agbioforum.org [Google Scholar]
  • Flannery M-L, Meade C, Mullins E (2005) Employing a composite gene-flow index to numerically quantify a crop's potential for gene flow: an Irish perspective. Environ. Biosafety Res. 4: 29–43. [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Ghislain M, Spooner DM, Rodriguez F, Villamon F, Nunez J, Waugh R, Bonierbale M (2004) Selection of highly informative and user-friendly microsatellites (SSRs) for genotyping of cultivated potato. Theor. Appl. Genet. 108: 881–890 [CrossRef] [PubMed] [Google Scholar]
  • Lawson HM (1983) True potato seed as arable weeds. Potato Res. 26: 303–306 [CrossRef] [Google Scholar]
  • McGill NP, Lohan G, O'Reilly B, Thorp C, Armstrong K, Gaule S, Macken F, Downey J, Dardis J, Devlin R, Leech B, McGloughlin T, Mullins E (2005) Coexistence of GM and non-GM Crops in Ireland. Report of the Working Group on the Coexistence of GM crops with Conventional and Organic Farming, Department of Agriculture and Food, Dublin, p 286 [Google Scholar]
  • McHughen A (2006) Editorial – The limited value of measuring gene flow via errant pollen from GM plants. Environ. Biosafety Res. 5: 1–2 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • McPartlan HC, Dale PJ (1994) An assessment of gene transfer by pollen from field grown transgenic potatoes to non-transgenic potatoes and related species. Transgenic Res. 3: 216–225 [CrossRef] [Google Scholar]
  • Milbourne D, Meyer R, Collins A, Ramsay L, Gebhardt C, Waugh R (1998) Isolation, characterisation and mapping of simple sequence repeat loci in potato. Mol. Gen. Genet. 259: 233–245 [CrossRef] [PubMed] [Google Scholar]
  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497 [CrossRef] [Google Scholar]
  • Ryan E, Meade C, Mullins E, Burke JI, Downes M (2006) Tracing field hybridisation in Ryegrass species using microsatellite and morphological markers. Environ. Biosafety Res. 5: 111–117 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Skogsmyr I (1994) Gene dispersal from transgenic potatoes to conspecifics: A field trial. Theor. Appl. Genet. 88: 770–774 [CrossRef] [PubMed] [Google Scholar]
  • Slavov GT, Howe GT, Gyaourova AV, Birkes DS, Adams WT (2005) Estimating pollen flow using SSR markers and paternity exclusion: accounting for mistyping. Mol. Ecol. 14: 3109–3121 [CrossRef] [PubMed] [Google Scholar]
  • Tolstrup K, Andersen SB, Boelt B, Buus M, Gylling M, Holm PB, Kjellsson G, Pedersen S, Ostergard H, Mikkelsen SA (2003) Report from the Danish Working Group on the co-existence of genetically modifed crops with conventional and organic crops. DIAS Report Plant Production 94, p 275 [Google Scholar]
  • Tynan JL, Williams MK, Conner AJ (1990) Low frequency of pollen dispersal from a field trial of transgenic potatoes. J. Genet. Breed. 44: 303–306 [Google Scholar]
  • Wilkinson MJ, Davenport IJ, Charters YM (2000) A direct regional scale estimate of transgene movement from genetically modified oilseed rape to its wild progenitors. Mol. Ecol. 9: 983–991 [CrossRef] [PubMed] [Google Scholar]