Free Access
Issue
Environ. Biosafety Res.
Volume 6, Number 3, July-September 2007
Page(s) 183 - 195
DOI https://doi.org/10.1051/ebr:2007041
Published online 16 November 2007
  • Ahl Goy P, Warren G, White J, Privalle L, Fearing P (1995) Interaction of an insect tolerant maize with organisms in the ecosystem. Proceedings of the Key Biosafety Aspects of Genetically Modified Organisms, Blackwell, Berlin, Berlin-Dahlem, pp 50–53 (cited in Ahmad et al. below) [Google Scholar]
  • Ahmad A, Wilde GE, Yan Zhu K (2006) Evaluation of effects of soil containing corn roots or biomass from transgenic corn expressing the coleopteran-specific Cry3Bb1 protein on earthworms. Environ. Entomol. 35: 976–985 [Google Scholar]
  • Allsopp PG, Nutt KA, Geijskes RJ, Smith GR, Suasa AW (2000) Transgenic sugarcane with increased resistance to canegrubs. In Allsopp PG, ed, Sugarcane Pest Management in the New Millennium, 4th Sugarcane Entomology Workshop, International Society for Sugar Cane Technology, Khon Kaen, Thailand, pp 63–67 [Google Scholar]
  • Ashouri A, Michaud D, Cloutier C (2001) Unexpected effects of different potato resistance factors to the Colorado potato beetle (Coleoptera: Chrysomelidae) on the potato aphid (Homoptera: Aphididae). Environ. Entomol. 30: 524–532 [Google Scholar]
  • Berg MP, Stoffer M, van den Heuvel HH (2004) Feeding guilds in Collembola based on digestive enzymes. Pedobiologia 48: 589–601 [Google Scholar]
  • Bewley GC, DeVillez EJ (1968) Isolation and characterization of the digestive proteinases in the earthworm Lumbricus terrestris Linneus. Comp. Biochem. Physiol. 25: 1061–1066 [Google Scholar]
  • Bitzer RJ, Buckelew LD, Pedigo LP (2002) Effects of transgenic herbicide-resistant soybean varieties and systems on surface-active springtails (Entognatha: Collembola). Environ. Entomol. 31: 449–461 [Google Scholar]
  • Burgess EPJ, Main CA, Stevens PS, Christeller JT, Gatehouse AMR, Laing WA (1994) Effects of protease inhibitor concentration and combinations on the survival, growth and gut enzyme activities of the black field cricket, Teleogryllus commodus. J. Insect Physiol. 40: 803–811 [Google Scholar]
  • Burgess EPJ, Lövei GL, Malone LA, Nielsen IW, Gatehouse HS, Christeller JT (2002) Prey-mediated effects of the protease inhibitor aprotinin on the predatory carabid beetle Nebria brevicollis. J. Insect Physiol. 48: 1093–1101 [Google Scholar]
  • Chari MS, Rao RSN, Prabhu SR (1992) Bio-efficacy of nicotine sulphate against pests of different crops. Tobacco Res. 18: 113–116 [Google Scholar]
  • Christeller JT, Burgess EPJ, Mett V, Gatehouse HS, Markwick NP, Murray C, Malone LA, Wright MA, Philip BA, Watt D, Gatehouse LN, Lövei GL, Shannon AL, Phung MM, Watson LM, Laing WA (2002) The expression of a mammalian proteinase inhibitor, bovine spleen trypsin inhibitor in tobacco and its effects on Helicoverpa armigera larvae. Transgenic Res. 11: 161–173 [Google Scholar]
  • Christeller JT, Malone LM, Todd JH, Marshall RM, Burgess EPJ, Philip BA (2005) Distribution and residual activity of two insecticidal proteins, avidin and aprotinin, expressed in transgenic tobacco plants, in the bodies and frass of Spodoptera litura larvae following feeding. J. Insect Physiol. 51: 1117–1126 [Google Scholar]
  • Christeller JT, Markwick NP, Poulton J, O'Callaghan M (2006) Binding of an insecticidal transgene protein product to soil: Biological activity of soil-bound avidin and the effects of time and microbial activity. Soil Biol. Biochem. 38: 2043–2052 [Google Scholar]
  • Clark BW, Coats JR (2006) Subacute effects of Cry 1Ab Bt corn litter on the earthworm Eisenia fetida and the springtail Folsomia candida. Environ. Entomol. 35: 1121–1129 [Google Scholar]
  • Cowgill SE, Bardgett RD, Kiezebrink DT, Atkinson HJ (2002) The effect of transgenic nematode resistance on non-target organisms in the potato rhizosphere. J. Appl. Ecol. 39: 915–923 [Google Scholar]
  • de Leo F, Bonade-Bottino M, Ceci LR, Gallerani RM, Jouanin L (2001) Effects of a mustard trypsin inhibitor expressed in different plants on three lepidopteran pests. Insect Biochem. Mol. Biol. 31: 593–602 [Google Scholar]
  • Delledonne M, Allegro G, Belenghi B, Balestrazzi A, Picco F, Levine A, Zelasco S, Calligari P, Confalonieri M (2001) Transformation of white poplar (Populus alba L.) with a novel Arabidopsis thaliana cysteine proteinase inhibitor and analysis of insect pest resistance. Molec. Breed. 7: 35–42 [Google Scholar]
  • Donegan K, Seidler R, Fieland V, Schaller D, Palm C, Ganio L, Cardwell D, Steinberger Y (1997) Decomposition of genetically engineered tobacco under field conditions: persistence of the proteinase inhibitor I product and effects on soil microbial respiration and protozoa, nematode and microarthropod populations. J. Appl. Ecol. 34: 767–777 [Google Scholar]
  • El-Gayar F, El-Shazli A, Khafagy S, Watson W (1975) Studies on the alkaloidal contents of Nicotiana rustica var. brasilia, and its insecticidal activity against Culex pipiens L. (Dipt.: Culicidae) and Spodoptera littoralis Boisd. (Lep.: Noctuidae). Z. Angew. Entomol. 78: 49–55 [Google Scholar]
  • Ferry N, Edwards MG, Gatehouse JA, Gatehouse AMR (2004) Plant-insect interactions: molecular approaches to insect resistance. Curr. Opin. Biotechnol. 15: 155–161 [CrossRef] [PubMed] [Google Scholar]
  • Fioretti E, Iacopino G, Angeletti M, Barra D, Bossa F, Ascoli F (1985) Primary structure and antiproteolytic activity of a Kunitz-type inhibitor from bovine spleen. J. Biol. Chem. 260: 11451–11455 [PubMed] [Google Scholar]
  • Flores S, Saxena D, Stotzky G (2005) Transgenic Bt plants decompose less in soil than non-Bt plants. Soil Biol. Biochem. 37: 1073–1082 [Google Scholar]
  • Fountain MT, Hopkin SP (2005) Folsomia candida (Collembola): a `standard' soil arthropod. Annu. Rev. Entomol. 50: 201–222 [Google Scholar]
  • Gatehouse JA, Gatehouse AMR, Brown DP (2000) Control of phytophagous insect pests using serine proteinase inhibitors. In Michaud D, ed, Recombinant Protease Inhibitors in Plants, Landes Bioscience, Eurekah.com, Texas, USA, pp 9–26 [Google Scholar]
  • Hopkins DW, Gregorich EG (2003) Detection and decay of the Bt endotoxin in soil from a field trial with genetically modified maize. Eur. J. Soil Sci. 54: 793–800 [Google Scholar]
  • James C (2005) Global Status of Commercialized Transgenic Crops: 2005. The International Service for the Acquisition of Agri-biotech Applications (ISAAA), Ithaca, NY. http://www.isaaa.org/ kc/bin/briefs34/es/index.htm [Google Scholar]
  • Kula H, Larink O (1998) Tests on the earthworms Eisenia fetida and Aporrectodea caliginosa. In Lokke H, van Gestel CAM, eds, Handbook of Soil Invertebrate Toxicity Tests, John Wiley and Sons, Chichester, UK, pp 95–112 [Google Scholar]
  • Laskowski MJ, Kato I (1980) Protein inhibitors of proteinases. Ann. Rev. Biochem. 49: 593–626 [Google Scholar]
  • Malone LA, Todd JH, Burgess EPJ, Christeller JT (2004) Development of hypopharyngeal glands in adult honey bees fed with a Bt toxin, a biotin-binding protein and a protease inhibitor. Apidologie 35: 655–664 [Google Scholar]
  • Markwick NP, Laing WA, Christeller JT, McHenry JZ, Newton MR (1998) Overproduction of digestive enzymes compensates for inhibitory effects of protease and a-amylase inhibitors fed to three species of leafrollers (Lepidoptera: Tortricidae). J. Econ. Entomol. 91: 1265–1276 [Google Scholar]
  • Rebek EJ, Hogg DB, Young DK (2002) Effect of four cropping systems on the abundance and diversity of epedaphic springtails (Hexapoda: Parainsecta: Collembola) in southern Wisconsin. Environ. Entomol. 31: 37–46 [Google Scholar]
  • Romeis J, Battini M, Bigler F (2003) Transgenic wheat with enhanced fungal resistance causes no effects on Folsomia candida (Collembola: Isotomidae). Pedobiologia 47: 141–147 [Google Scholar]
  • Saxena D, Stotzky G (2001a) Bacillus thuringiensis (Bt) toxin released from root exudates and biomass of Bt corn has no apparent effect on earthworms, nematodes, protozoa, bacteria and fungi in soil. Soil Biol. Biochem. 33: 1225–1230 [Google Scholar]
  • Saxena D, Stotzky G (2001b) Bt corn has a higher lignin content than non-Bt corn. Am. J. Bot. 88: 1704–1706 [Google Scholar]
  • Snider R (1973) Laboratory observations on the biology of Folsomia candida (Willem) (Collembola: Isotomidae). Rev. Ecol. Biol. Sol 10: 103–124 [Google Scholar]
  • Stam EM, van de Leemkule MA, Ernsting G (1996) Trade-offs in the life history and energy budget of the parthenogenetic collembolan Folsomia candida (Willem). Oecologia 107: 283–292 [Google Scholar]
  • Terra WR, Ferreira C (1994) Insect digestive enzymes: properties, compartmentalization and function. Comp. Biochem. Physiol. 109B: 1–62 [Google Scholar]
  • van Amelsvoort PAM, Usher MB (1989) Egg production related to food quality in Folsomia candida (Collembola: Isotomidae): effects on life history strategies. Pedobiologia 33: 61–66 [Google Scholar]
  • Vercesi ML, Krogh PH, Holmstrup M (2006) Can Bacillus thuringiensis (Bt) corn residues and Bt-corn plants affect life-history traits in the earthworm Aporrectodea caliginosa? Appl. Soil Ecol. 32: 180–187 [Google Scholar]
  • Vincent JP, Lazdunski M (1972) Trypsin-pancreatic trypsin inhibitor association. Dynamics of the interaction and role of disulfide bridges. Biochem. 11: 2967–2977 [Google Scholar]
  • Voisey CR, Dudas B, Biggs R, Burgess EPJ, Wigley PJ, McGregor PG, Lough TJ, Beck DL, Forster RLS, White DWR, Spangenberg G (2001) Transgenic pest and disease resistant white clover plants. In Spangenberg G, ed, Molecular Breeding of Forage Crops. Developments in Plant Breeding, Kluwer Academic Publishers, London, UK, pp 239–250 [Google Scholar]
  • Yu L, Berry RE, Croft BA (1997) Effects of Bacillus thuringienesis toxins in transgenic cotton and potato on Folsomia candida (Collembola: Isotomidae) and Oppia nitens (Acari: Orbatidae). J. Econ. Entomol. 90: 113–118 [Google Scholar]
  • Zwahlen C, Hilbeck A, Howald R, Nentwig W (2003) Effects of transgenic Bt corn litter on the earthworm Lumbricus terrestris. Molec. Ecol. 12: 1077–1086 [Google Scholar]