Free Access
Issue
Environ. Biosafety Res.
Volume 4, Number 1, January-March 2005
Page(s) 29 - 43
DOI https://doi.org/10.1051/ebr:2005009
Published online 15 August 2005
  • Advisory Committee on Releases to the Environment (2004) Advice on scientific issues concerning the proposed regime for the co-existence of GM and non-GM crops. p 6. http://www.defra.gov.uk/environment/acre/advice/pdf/acre_advice-56.pdf [Google Scholar]
  • Ammann K, Jacot Y, Al Mazyad RP (2001) Safety of genetically engineered plants: an ecological risk assessment of vertical gene flow. In Custers R, ed, Safety of Genetically Engineered Crops. Zwijnaarde, Belgium, Flanders Interuniversity, Institute for Biotechnology, pp 60–87 [Google Scholar]
  • Bartsch D, Brand U, Morak C, Pohl-Orf M, Schuphan I, Ellstrand NC (2001) Biosafety of hybrids between transgenic virus-resistant sugar beet and Swiss chard. Ecol. Appl. 11: 142–147 [CrossRef] [Google Scholar]
  • Bartsch D, Cuguen J, Biancardi E, Sweet J (2003) Environmental implications of gene flow from sugar beet to wild beet – current status and future research needs. Environ. Biosafety Res. 2: 105–115 [EDP Sciences] [PubMed] [Google Scholar]
  • Beckie HJ, Hall LM, Warwick SI (2001) Impact of herbicide-resistant crops as weeds in Canada. Proceedings of British Crop Protection Conference: Weeds, pp 135–142 [Google Scholar]
  • Boudry P, Mörchen M, Saumitou-Laprade P, Vernet P, Van Dijk H (1993) The origin and evolution of weed beets: consequences for the breeding and release of herbicide resistant transgenic sugar beets. Theor. Appl. Genet. 87: 471–478 [CrossRef] [PubMed] [Google Scholar]
  • Brule-Babel AL, Van Acker RC, Friesen LF (2003) Issues related to release of GM wheat: gene flow and selection. Proceedings of the 2002 Manitoba Agronomists Conference, University of Manitoba, Winnipeg, Canada [Google Scholar]
  • Conner AJ, Glare TR, Nap JP (2003) The release of genetically modified crops into the environment. Part II. Overview of ecological risk assessment. Plant J. 33: 19–46 [CrossRef] [PubMed] [Google Scholar]
  • de Vries AP (1974) Some aspects of cross pollination in wheat (Triticum aestivum L.). Seed set on male sterile plants as influenced by distance from the pollen source. Pollinator: Male sterile ratio and width of the male sterile strip. Euphytica 23: 601–622 [CrossRef] [Google Scholar]
  • de Vries AP, Meijden VD, Brandenburg WA (1992) Botanical files – a study of the real chances for spontaneous gene flow from cultivated plants to the wild flora of the Netherlands. Gorteria, Supplement 1, p 100 [Google Scholar]
  • DEFRA (2001) Risk assessment for release and marketing of GMOs in the European Union. http://www.defra.gov.uk/environment/gm/background/risk [Google Scholar]
  • Department of Agriculture and Food (2004) Fact sheet on Irish agriculture: May 2004, p 2 [Google Scholar]
  • Devos Y, Reheul D, de Schrijver A, Cors F, Moens W (2004) Management of herbicide-tolerant oilseed rape in Europe: a case study on minimizing vertical gene flow. Environ. Biosafety Res. 3: 135–148 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Eastham K, Sweet J (2002) Genetically modified organisms (GMOs): The significance of gene flow through pollen transfer. Environmental Issue Report No. 28, p 75 [Google Scholar]
  • Eijlander R, Stiekeman WJ (1994) Biological containment of potato (Solanum tuberosum): Outcrossing to the related wild species black nightshade (S. nigrum) and bittersweet (S. dulcamara). Sex. Plant R. 7: 29–40 [Google Scholar]
  • European Commission (2003) Guidelines for the development of national strategies and best practices to ensure the co-existence of genetically modified crops with conventional and organic farming, Commission Recommendation 2003/556/EC. http://europa.eu.int/comm/agriculture/publi/reports/coexistence2/index_en.htm [Google Scholar]
  • Frietema De Vries FT (1996) Cultivated plants and the wild flora. Effect analysis by dispersal codes. Rijksherbarium, Leiden [Google Scholar]
  • Gould FW (1968) Grass Systematics. New York, McGraw Hill, p 382 [Google Scholar]
  • Hancock JF (2003) A framework for assessing the risk of transgenic crops. BioSci. 53: 512–519 [CrossRef] [Google Scholar]
  • Hauser TP, Bjorn GK, Magnussen L, Shim SI (2003a) Hybrids between cultivated and wild carrots: a life history. European Science Foundation, Assessment of the Impacts of Genetically Modified Organisms: Introgression from genetically modified plants to wild relatives and its consequences, University of Amsterdam, Amsterdam, January 21–24 [Google Scholar]
  • Hauser TP, Damgaard C, Jorgensen RB (2003b) Frequency-dependent fitness of hybrids between oilseed rape (Brassica napus) and weedy B. rapa (Brassicaceae). Amer. J. Bot. 90: 571–578 [CrossRef] [PubMed] [Google Scholar]
  • Hucl P (1996) Out-crossing rates for 10 Canadian spring wheat cultivars. Can. J. Plant Sci. 76: 423–427 [Google Scholar]
  • Levin DA, Kerster HW (1974) Gene flow in seed plants. Evol. Biol. 7: 139–200 [Google Scholar]
  • Loureiro I, Escorial MC, Garcia-Baudin JM, Chueca MC (2003) Pollen dispersal and potential hybridisation between wheat cultivars. In Boelt B, ed, 1st European Conference on Co-existence of Genetically Modified Crops with Conventional and Organic Crops, Research Centre Flakkebjerg, pp 85–88 [Google Scholar]
  • McPartlan H, Dale PJ (1994) The transfer of introduced genes from field grown transgenic potatoes to non-transgenic potatoes and related Solanaceous species. Transgenic Res. 3: 216–225 [CrossRef] [Google Scholar]
  • Meade C, Mullins E (2005) GM crop cultivation in Ireland: Ecological and Economic considerations. Proc. R. Ir. Acad.: Biol. Environ. 105B: 33–52 [CrossRef] [Google Scholar]
  • Newstrom LE, Armstrong T, Robertson AW, Lee WG, Heenan PB, Peltzer D, Wilton AD, FitzJohn RG, Breitwieser I, Glenny D (2003) Environmental Risks to the New Zealand Flora from Transgenic Crops: the role of gene flow. Landcare Research, Lincoln, p 76. www.landcareresearch.co.nz/research/biodiversity/geneflow [Google Scholar]
  • Pohl-Orf M, Morak C, Wehres U, Saeglitz C, Drießen S, Lehnen M, Hesse P, Mücher T, von Soosten C, Schuphan I, Bartsch D (2000) The environmental impact of gene flow from sugar beet to wild beet: An ecological comparison of transgenic and natural virus tolerance genes. In Fairbairn C, Scoles G, McHughen A, eds, Proceedings of the 6th International Symposium on The Biosafety of Genetically Modified Organisms, July 2000, Saskatoon, Canada, pp 51–55 [Google Scholar]
  • Preston CD, Pearman DA, Dines TD (2002) New Atlas of the British and Irish Flora. Oxford, Oxford University Press [Google Scholar]
  • Programme UNE (2003) The UNEP-GEF project on the implementation of the national biosafety framework of Bulgaria. United Nations Environmental Programme, Division of Global Environment Facility Coordination. http://www.unep.ch/biosafety/Implementation/countries/Bulgariaoperationalreport%202003_12final.pdf [Google Scholar]
  • Ramsay G, Thompson C, Squire G (2003) Quantifying landscape-scale gene flow in oilseed rape. Scottish Crop Research Institute, Invergowrie, Dundee and DEFRA, Project RG0216. http://www.defra.gov.uk/environment/gm/research/pdf/epg_ rg0216.pdf [Google Scholar]
  • Raybould AF, Gray AJ (1993) Genetically modified crops and hybridisation with wild relatives: A UK perspective. J. Appl. Ecol. 30: 199–219 [CrossRef] [Google Scholar]
  • Ritala A, Nuutila AM, Aikasalo R, Kauppinen V, Tammisola J (2002) Measuring gene flow in the cultivation of transgenic barley. Crop Sci. 42: 278–285 [CrossRef] [PubMed] [Google Scholar]
  • Romano A, Plas LHW, Witholt B, Eggink G, Mooibroek H (2005) Expression of poly-3-(R)-hydroxyalkanoate (PHA) polymerase and acyl-CoA-transacylase in plastids of transgenic potato leads to the synthesis of a hydrophobic polymer, presumably medium-chain-length PHAs. Planta 220: 455–464 [CrossRef] [PubMed] [Google Scholar]
  • Salisbury P (2002) Pollen movement in canola (Brassica napus) and outcrossing between B. napus crops. Environmental Safety Report, University of Melbourne, p 22 [Google Scholar]
  • Sears MK, Stanley-Horn DE (2000) Impact of Bt corn pollen on monarch butterfly populations. In Fairbairn C, Scoles G, McHughen A, eds, Proceedings of the 6th International Symposium on The Biosafety of Genetically Modified Organisms, July 2000, Saskatoon, Canada [Google Scholar]
  • Stace CA (1984) Hybridization and the flora of the British Isles. Botanical Society of the British Isles, Academic Press, London, p 626 [Google Scholar]
  • Sweet J, Simpson E, Law JR, Lutman P, Berry K, Payne R, Champion G, May M, Walker K, Wightman P, Lainsbury M (2004) Botanical and rotational implications of genetically modified herbicide tolerance in winter oilseed rape and sugar beet (BRIGHT Project). HGCA Project Report: p 265 [Google Scholar]
  • Thanavala Y, Mahoney M, Pal S, Scott A, Richter L, Natarajan N, Goodwin P, Arntzen CJ, Mason HS (2005) Immunogenicity in humans of an edible vaccine for hepatitis B. Proc. Natl. Acad. Sci. U.S.A. 102: 3378–3382 [CrossRef] [PubMed] [Google Scholar]
  • Tolstrup K, Andersen SB, Boelt B, Buus M, Gylling M, Holm PB, Kjellsson G, Pedersen S, Ostergard H, Mikkelsen SA (2003) Report from the Danish Working Group on the Co-existence of genetically modified crops with conventional and organic crops. DIAS Report Plant Production No. 94, p 275 [Google Scholar]
  • Treu R, Emberlin J (2000) Pollen dispersal in the crops Maize (Zea mays), Oil seed rape (Brassica napus ssp oleifera), Potatoes (Solanum tuberosum), Sugar beet (Beta vulgaris ssp. vulgaris) and Wheat (Triticum aestivum). A report for the Soil Association, National Pollen Research Unit, University College Worcester, p 54 [Google Scholar]
  • Tynan JL, Williams MK, Conner AJC (1990) Low frequency of pollen dispersal from a field trial of transgenic potatoes. J. Genet. Breed. 44: 303–306 [Google Scholar]
  • USDA (2002) Fact Sheet: Environmental Considerations for Bio-Engineered Crops in U.S. Food Aid Donations, Bureau of Economic and Business Affairs, Washington DC. http://www.state.gov/e/eb/rls/fs/15605.htm [Google Scholar]
  • Van Acker RC, Brûlé-Babel AL, Friesen LF, Entz MH (2003) GM/non-GM wheat co-existence in Canada: Roundup Ready® wheat as a case study. In Boelt B, ed, 1st European Conference on Co-existence of Genetically Modified Crops with Conventional and Organic Crops, Research Centre Flakkebjerg, pp 60–71 [Google Scholar]
  • Van Raamsdonk LWD, Schouten HJ (1997) Gene flow and establishment of transgenes in natural plant populations. Acta Bot. Neerl. 46: 69–84 [Google Scholar]
  • Waines JG, Hegde SG (2003) Intraspecific gene flow in bread wheat as affected by reproductive biology and pollination ecology of wheat flowers. Crop Sci. 43: 451–463 [CrossRef] [Google Scholar]
  • Webb DA, Parnell JAN, Doogue D, Dundalk (1996) An Irish Flora. Dundalk, Dún Dealgan Press [Google Scholar]
  • Wilkinson MJ, Sweet J, Poppy GM (2003) Risk assessment of GM plants: avoiding gridlock? Trends Plant Sci. 8: 208–212 [CrossRef] [PubMed] [Google Scholar]