Free Access
Issue
Environ. Biosafety Res.
Volume 3, Number 3, July-September 2004
Page(s) 135 - 148
DOI https://doi.org/10.1051/ebr:2005001
Published online 15 April 2005
  • Baker J, Preston C (2003) Predicting the spread of herbicide resistance in Australian canola fields. Transgen. Res. 12: 731–737 [CrossRef] [Google Scholar]
  • Becker H, Karle R, Han S (1992) Environmental variation for outcrossing rates in rapeseed (Brassica napus). Theor. Appl. Genet. 84: 303–306 [PubMed] [Google Scholar]
  • Beckie H, Hall L, Warwick S (2001) Impact of herbicide resistant crops as weeds in Canada. Proc. Brighton Crop Protect. Conf. – Weeds, pp 135–142 [Google Scholar]
  • Beckie H, Warwick S, Nair H, Séguin-Swartz G (2003) Gene flow in commercial fields of herbicide-resistant canola (Brassica napus). Ecol. Appl. 13: 1276–1294 [CrossRef] [Google Scholar]
  • Beckie H, Séguin-Swartz G, Nair H, Warwick S, Johnson E (2004) Multiple herbicide-resistant canola (Brassica napus) can be controlled by alternative herbicides. Weed Sci. 52: 152–157 [CrossRef] [Google Scholar]
  • Beismann H, Roller A, Zeitler R (2003) Assessing the number of transgenic oilseed rape seed in the soil seed bank of former release sites. Asp. App. Biol. 69: 209–215 [Google Scholar]
  • Bilsborrow P, Evans E, Bowman J, Bland B (1998) Contamination of edible double-low oilseed rape crops via pollen transfer from high erucic cultivars. J. Sci. Food Agric. 76: 17–22 [CrossRef] [Google Scholar]
  • Bing D, Downey R, Rakow G (1995) An evaluation of the potential of intergeneric gene transfer between Brassica napus and Sinapis arvensis. Plant Breed. 114: 481–484 [Google Scholar]
  • Bing D, Downey R, Rakow G (1996) Hybridisation among Brassica napus, B. rapa and B. juncea and their 2 weedy relatives B. nigra and Sinapis arvensis under open pollination conditions in the field. Plant Breed. 115: 470–473 [CrossRef] [Google Scholar]
  • Blackshaw R, Brandt R, Janzen H, Entz T, Grant C, Derksen D (2003) Differential response of weed species to added nitrogen. Weed Sci. 51: 532–539 [CrossRef] [Google Scholar]
  • Blackshaw R, Brandt R, Janzen H, Entz T (2004) Weed species response to phosphorus fertilization. Weed Sci. 52: 406–412 [CrossRef] [Google Scholar]
  • Chadoeuf R, Darmency H, Maillet J, Renard M (1998) Survival of buried seeds of interspecific hybrids between oilseed rape, hoary mustard and wild radish. Field Crops Res. 58: 197–204 [CrossRef] [Google Scholar]
  • Champolivier J, Gasquez J, Messéan A, Richard-Molard M (1999) Management of transgenic crops within the cropping system. In Lutman P, ed, Gene Flow and Agriculture: Relevance for Transgenic Crops, British Crop Protection Council, pp 233–240 [Google Scholar]
  • Chèvre AM, Eber F, Baranger A, Kerlan P, Festoc G, Vallee P, Renard M (1996) Interspecific gene flow as a component of risk assessment for transgenic Brassicas. Acta Hortic. 407: 169–179 [Google Scholar]
  • Chèvre AM, Eber F, Baranger A, Renard M (1997) Gene flow from transgenic crops. Nature 389: 924 [CrossRef] [Google Scholar]
  • Chèvre AM, Eber F, Baranger A, Hureau G, Barret P, Picault H, Renard M (1998) Characterisation of backcross generations obtained under field conditions from oilseed rape-wild radish F1 interspecific hybrids: an assessment of transgene dispersal. Theor. Appl. Genet. 97: 90–98 [CrossRef] [Google Scholar]
  • Chèvre AM, Eber F, Darmency W, Fleury A, Picault I, Letanneur J, Renard M (2000) Assessment of interspecific hybridisation between transgenic oilseed rape and wild radish under normal agronomic conditions. Theor. Appl. Genet. 100: 1233–1239 [CrossRef] [Google Scholar]
  • Chèvre AM, Ammitzbøll H, Breckling B, Dietz-Pfeilstetter A, Eber F, Fargue A, Gomez-Campo C, Jenczewski E, Jørgensen R, Lavigne C, Meier M, den Nijs H, Pascher K, Seguin-Swartz G, Sweet J, Stewart N, Warwick S (2004) A review on interspecific gene flow from oilseed rape to wild relatives. In den Nijs H, Bartsch D, Sweet J, eds, Introgression from Genetically Modified Plants into Wild Relatives, CABI publishing, pp 235–251 [Google Scholar]
  • Colbach N, Clermont-Dauphin C, Meynard J (2001a) GENESYS: a model of the influence of cropping systems on gene escape from herbicide tolerant rapeseed crops to rape volunteers. I) Temporal evolution of a population of rapeseed volunteers in a field. Agric. Ecosyst. Environ. 83: 235–253 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Colbach N, Clermont-Dauphin C, Meynard J (2001b) GENESYS: a model of the influence of cropping systems on gene escape from herbicide tolerant rapeseed crops to rape volunteers. II) Genetic exchanges among volunteer and crop populations in a small region. Agric. Ecosyst. Environ. 83: 255–270 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Crawley M, Brown S (1995) Seed limitation and the dynamics of feral oilseed rape on the M25 motorway. Proc. R. Soc. Lond. 259: 49–54 [CrossRef] [Google Scholar]
  • Crawley M, Hails R, Rees M, Kohn D, Buxton J (1993) Ecology of transgenic oilseed rape in natural habitats. Nature 363: 620–623 [CrossRef] [Google Scholar]
  • Crawley M, Brown S, Hails R, Kohn D, Rees M (2001) Transgenic crops in natural habitats. Nature 409: 682–683 [CrossRef] [PubMed] [Google Scholar]
  • Cresswell J, Bassam A, Bell S, Collins S, Kelly T (1995) Predicted pollen dispersal by honey-bees and three species of bumble-bees foraging on oilseed rape – a comparison of three models. Funct. Ecol. 6: 829–841 [CrossRef] [Google Scholar]
  • Cresswell J, Osborne J, Bell S (2002) A model of pollinator-mediated gene flow between plant populations with numerical solutions for bumblebees pollinating oilseed rape. Oikos 98: 375–384 [CrossRef] [Google Scholar]
  • Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nature Biotechnol. 20: 581–586 [Google Scholar]
  • Darmency H, Fleury A (2000) Mating system in Hirschfeldia incana and hybridisation to oilseed rape. Weed Res. 40: 231–238 [CrossRef] [Google Scholar]
  • Dale P (1992) Spread of engineered genes to wild relatives. Plant Physiol. 100: 13–15 [CrossRef] [PubMed] [Google Scholar]
  • Dale P (1994) The impact of hybrids between genetically modified crop plants and their related species: general considerations. Mol. Ecol. 3: 31–36 [CrossRef] [Google Scholar]
  • Deville A, Garnier A, Lecomte J, Adamczyk K, Huet S, Merrien A, Messéan A (2003) Origin and dynamics of feral oilseed rape populations. In Boelt B, ed, 1st European Conference on the Co-existence of Genetically Modified Crops with Conventional and Organic Crops, Research Centre Flakkebjerg, pp 100–101 [Google Scholar]
  • Dietz-Pfeilstetter A, Zwerger P (2003) Pollen and seed dispersal during the large scale cultivation of transgenic oilseed rape. In Boelt B, ed, 1st European Conference on the Co-existence of Genetically Modified Crops with Conventional and Organic Crops, Research Centre Flakkebjerg, pp 97–99 [Google Scholar]
  • Downey R (1999) Gene flow and rape – the Canadian experience. In Lutman P, ed, Gene Flow and Agriculture: Relevance for Transgenic Crops, British Crop Protection Council, pp 109–116 [Google Scholar]
  • Eastham K, Sweet J (2002) Genetically modified organisms (GMOs): the significance of gene flow through pollen transfer. Environmental Issue Report No 28, European Environment Agency [Google Scholar]
  • Ellstrand N (1992) Gene flow by pollen: implications for plant conservation genetics. Oikos 63: 77–86 [CrossRef] [Google Scholar]
  • Ellstrand N (2003) Dangerous liaisons? When cultivated plants mate with their wild relatives. In Scheiner S, ed, Synthesis in Ecology and Evolution, the Johns Hopkins University Press [Google Scholar]
  • Ellstrand N, Hoffman C (1990) Hybridization as an avenue of escape for engineered genes. BioScience 40: 438–442 [CrossRef] [Google Scholar]
  • Ellstrand N, Prentice H, Hancock J (1999) Gene flow and introgression from domesticated plants into their wild relatives. Annu. Rev. Ecol. Syst. 30: 539–563 [CrossRef] [Google Scholar]
  • Fredshavn J, Poulsen G, Huybrechts I, Rüdelsheim P (1995) Competitiveness of transgenic oilseed rape. Trans. Res. 4: 142–148 [CrossRef] [Google Scholar]
  • Frello S, Hansen K, Jensen J, Jørgensen R (1995) Inheritance of rapeseed (Brassica napus)-specific RAPD markers and a transgene in the cross B. juncea × (B. juncea × B. napus). Theor. Appl. Genet. 91: 236–241 [PubMed] [Google Scholar]
  • Friesen L, Nelson A, Van Acker R (2003) Evidence of contamination of pedigreed canola (Brassica napus) seedlots in western Canada with genetically modified herbicide resistance traits. Agron. J. 95: 1342–1347 [CrossRef] [Google Scholar]
  • Gray A, Raybould A (1998) Reducing transgene escape routes. Nature 392: 653–654 [CrossRef] [Google Scholar]
  • Gruber S, Pekrun C, Claupein W (2004) Population dynamics of volunteer oilseed rape (Brassica napus L.) affected by tillage. Eur. J. Agron. 20: 351–361 [CrossRef] [Google Scholar]
  • Guéritaine G, Sester M, Eber F, Chèvre AM, Darmency H (2002) Fitness of backcross six of hybrids between transgenic oilseed rape (Brassica napus) and wild radish (Raphanus raphanistrum). Mol. Ecol. 11: 1419–1426 [CrossRef] [PubMed] [Google Scholar]
  • Gulden R (2003) Secondary seed dormancy and the seed bank ecology of Brassica napus L. in western Canada. Ph.D. thesis, University of Saskatchewan, Saskatoon, Canada [Google Scholar]
  • Gulden R, Shirtliffe S, Thomas A (2003a) Harvest losses of canola (Brassica napus) cause large seed bank inputs. Weed Sci. 51: 83–86 [CrossRef] [Google Scholar]
  • Gulden R, Shirtliffe S, Thomas A (2003b) Secondary seed dormancy prolongs persistence of volunteer canola in western Canada. Weed Sci. 51: 904–913 [CrossRef] [Google Scholar]
  • Hails R, Rees M, Kohn D, Crawley M (1997) Burial and seed survival in Brassica napus subsp. Oleifera and Sinapsis arvensis including a comparison of transgenic and non-transgenic lines of the crop. Proc. R. Soc. Lond. 264: 1–7 [CrossRef] [Google Scholar]
  • Hall L, Topinka K, Huffman J, Davis L, Good A (2000) Pollen flow between herbicide-resistant Brassica napus is the cause of multiple-resistant B. napus volunteers. Weed Sci. 48: 688–694 [CrossRef] [Google Scholar]
  • Hall L, Good A, Beckie H, Warwick S (2003) Gene flow in herbicide-resistant canola (Brassica napus): the Canadian experience. In Lelley T, Balász E, Tepfer M, eds, Ecological Impact of GMO Dissemination in Agro-Ecosystems, Proceedings of an International OECD Workshop, pp 57– 66 [Google Scholar]
  • Hansen L, Siegismund H, Jørgensen R (2001) Introgression between oilseed rape (Brassica napus L.) and its weedy relative B. rapa L. in a natural population. Genet. Resour. Crop Evol. 48: 621–627 [CrossRef] [Google Scholar]
  • Hauser T, Jørgensen R, Østergård H (1998a) Fitness of backcross and F2 hybrids between weedy Brassica rapa and oilseed rape (B. napus). Heredity 81: 436–443 [CrossRef] [Google Scholar]
  • Hauser T, Shaw R, Østergård H (1998b) Fitness of F1 hybrids between weedy Brassica rapa and oilseed rape (B. napus). Heredity 81: 429–435 [CrossRef] [Google Scholar]
  • Hauser T, Damgaard C, Jørgensen R (2003) Frequency dependent fitness of hybrids between oilseed rape (Brassica napus) and weedy B. rapa (Brassicaceae). Am. J. Bot. 90: 571–578 [CrossRef] [PubMed] [Google Scholar]
  • Hobson R, Bruce D (2002) Seed loss when cutting a standing crop of oilseed rape with tow types of combine harvester header. Biosyst. Eng. 81: 281–286 [CrossRef] [Google Scholar]
  • Hoffman C (1990) Ecological risks of genetic engineering of crop plants. BioScience 40: 434–437 [CrossRef] [Google Scholar]
  • Ingram J (2000) Report on the separation distances required to ensure cross-pollination is below specified limits in non-seed crops of sugar beet, maize and oilseed rape. MAFF Project No RG0123 [Google Scholar]
  • Jenczewski E, Ronfort J, Chèvre AM (2003) Crop-to-wild gene flow, introgression and possible fitness effects of transgenes. Environ. Biosafety Res. 2: 9–24 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Jørgensen R, Andersen B, Hauser T, Landbo L, Mikkelsen T, Østergård H (1998) Introgression of crop genes from oilseed rape (Brassica napus) to related wild species – an avenue for the escape of engineered genes. Acta Hortic. 459: 211–217 [Google Scholar]
  • Jørgensen R, Andersen B, Snow A, Hauser T (1999) Ecological risks of growing genetically modified crops. Plant Biotechnol. 16: 69–71 [Google Scholar]
  • Jørgensen R, Hauser T, Hansen L, Siegismund H, Andersen B (2003) Gene flow from oilseed rape (Brassica napus) and beet (Beta vulgaris) to wild relatives: effects of herbicide tolerant cultivars. In Lelley T, Balász E, Tepfer M, eds, Ecological Impact of GMO Dissemination in Agro-Ecosystems, Proceedings of an International OECD Workshop, pp 67–75 [Google Scholar]
  • Jørgensen R, Ammitzbøll H, Hansen L, Johannessen M, Andersen B, Hauser T (2004) Gene introgression and consequences in Brassica. In den Nijs H, Bartsch D, Sweet J, eds, Introgression from Genetically Modified Plants into Wild Relatives, CABI publishing, pp 253–277 [Google Scholar]
  • Kareiva P, Morris W, Jacobi C (1994) Studying and managing the risk of cross-fertilisation between transgenic crops and wild relatives. Mol. Ecol. 3: 15–21 [CrossRef] [Google Scholar]
  • Klinger T, Ellstrand N (1999) Transgene movement via gene flow: recommendations for improved biosafety assessment. In Amman K, Jacot Y, Simonsen V, Kjellsson G, eds, Methods for risk assessment of transgenic plants. III Ecological risks and prospects of transgenic plants, Birkhäuser Verlag Basel, pp 129–140 [Google Scholar]
  • Lavigne C, Klein E, Vallée P, Pierre J, Godelle B, Renard, M (1998) A pollen-dispersal experiment with transgenic oilseed rape. Estimation of the average pollen dispersal of an individual plant within a field. Theor. Appl. Genet. 96: 886–896 [CrossRef] [Google Scholar]
  • Lefol E, Danielou V, Darmency H (1996a) Predicting hybridisation between transgenic oilseed rape and wild mustard. Field Crops Res. 45: 153–161 [CrossRef] [Google Scholar]
  • Lefol E, Fleury A, Darmency H (1996b) Gene dispersal from transgenic crops. II. Hybridisation between oilseed rape and the hoary mustard. Sex. Plant Reprod. 9: 189–196 [CrossRef] [Google Scholar]
  • López-Granados F, Lutman P (1998) Effect of environmental conditions on the dormancy and germination of volunteer oilseed rape seed (Brassica napus). Weed Sci. 46: 419–426 [Google Scholar]
  • Lutman P (2003) Co-existence of conventional, organic and GM crops – role of temporal and spatial behaviour of seeds. In Boelt B, ed, 1st European Conference on the Co-existence of Genetically Modified Crops with Conventional and Organic Crops, Research Centre Flakkebjerg, pp 33–42 [Google Scholar]
  • Lutman P, Cussans G, Wright K, Wilson B, Wright G, Lawson H (2002) The persistence of seeds of 16 weed species over six years in two arable fields. Weed Res. 42: 231–241 [CrossRef] [Google Scholar]
  • Lutman P, Freeman S, Pekrun C (2004) The long-term persistence of seeds of oilseed rape (Brassica napus) in arable fields. J. Agricult. Sci. 141: 231–240 [CrossRef] [Google Scholar]
  • Messéan A (1997) Management of herbicide tolerant crops in Europe. Proc. Brighton Crop Protect. Conf. – Weeds, pp 947–954 [Google Scholar]
  • Mesquida J, Renard M (1982) Study of the pollen dispersal by wind and of the importance of wind pollination in rapeseed (Brassica napus var. oleifera Metzger). Apidologie 4: 353–366 [CrossRef] [EDP Sciences] [Google Scholar]
  • Momoh E, Zhou W, Kristiansson B (2002) Variation in the development of secondary dormancy in oilseed rape genotypes under conditions of stress. Weed Res. 42: 446–455 [CrossRef] [Google Scholar]
  • Morgan C, Bruce D, Child R, Ladbrooke Z, Arthur A (1998) Genetic variation for pod shatter resistance among lines of oilseed rape developed from synthetic B. napus. Field Crops Res. 58: 153–165 [Google Scholar]
  • Moyes C, Lilley J, Casais C, Cole S, Haeger P, Dale P (2002) Barriers to gene flow from oilseed rape (Brassica napus) into populations of Sinapis arvensis. Mol. Ecol. 11: 103–112 [Google Scholar]
  • Norris C, Sweet J (2002) Monitoring large scale releases of genetically modified crops (EPG 1/5/84) incorporating report on project EPG 1/5/30: Monitoring releases of genetically modified crop plants [Google Scholar]
  • Norris C, Simpson E, Sweet J, Thomas J (1999) Monitoring weediness and persistence of genetically modified oilseed rape (Brassica napus) in the UK. In Lutman P, ed, Gene Flow and Agriculture: Relevance for Transgenic Crops, British Crop Protection Council, pp 255–260 [Google Scholar]
  • Norris C, Sweet J, Parker J, Law J (2004) Implications for hybridization and introgression between oilseed rape (Brassica napus) and wild turnip (B. rapa) from an agricultural perspective. In den Nijs H, Bartsch D, Sweet J, eds, Introgression from Genetically Modified Plants into Wild Relatives, CABI publishing, pp 107–123 [Google Scholar]
  • Orson J (2002) Gene stacking in herbicide tolerant oilseed rape: lessons from the North America experience. English Nature Research Reports No 443, English Nature [Google Scholar]
  • Orson J, Oldfield J (1999) Gene flow and the practical management of genetically modified crops in the UK. In Lutman P, ed, Gene Flow and Agriculture: Relevance for Transgenic Crops, British Crop Protection Council, pp 247–252 [Google Scholar]
  • Osborne J, Clark S, Morris R, Williams I, Riley J, Smith A, Reynolds D, Edwards A (1999) A landscape-scale study of bumblebee foraging range and constancy, using harmonic radar. J. Appl. Ecol. 36: 519–533 [CrossRef] [Google Scholar]
  • Paul E, Thompson C, Dunwell J (1995) Gene dispersal from genetically modified oilseed rape in the field. Euphytica 81: 283–289 [CrossRef] [MathSciNet] [Google Scholar]
  • Pekrun C, Lutman P (1998) The influence of post-harvest cultivation on the persistence of volunteer oilseed rape. Asp. App. Biol. 51: 113–118 [Google Scholar]
  • Pekrun C, Lutman P, Baeumer K (1997a) Induction of secondary dormancy in rape seeds (Brassica napus L.) by prolonged inhibition under conditions of water stress or oxygen deficiency in darkness. Eur. J. Agron. 6: 245–255 [CrossRef] [Google Scholar]
  • Pekrun C, Potter T, Lutman P (1997b) Genotypic variation in the development of secondary dormancy in oilseed rape and its impact on the persistence of volunteer rape. Proc. Brighton Crop Protect. Conf. – Weeds, pp 243–247 [Google Scholar]
  • Pekrun C, Hewitt J, Lutman P (1998) Cultural control of volunteer oilseed rape (Brassica napus). J. Agricult. Sci. 130: 155–163 [CrossRef] [Google Scholar]
  • Pekrun C, Gruber S, Lutman P, Claupein W (2003) The potential impact of volunteer rape as a link between previous and current rape crops – its relevance for managing HT-rape. In Boelt B, ed, 1st European Conference on the Co-existence of Genetically Modified Crops with Conventional and Organic Crops, Research Centre Flakkebjerg, pp 187–189 [Google Scholar]
  • Pertl M, Hauser T, Damgaard C, Jørgensen R (2002) Male fitness of oilseed rape (Brassica napus), weedy B. rapa and their F1 hybrids when pollinating B. rapa seeds. Heredity 89: 212–218 [CrossRef] [PubMed] [Google Scholar]
  • Pessel D, Lecomte J, Emeriau V, Krouti M, Messéan A, Gouyon H (2001) Persistance of oilseed rape (Brassica napus L.) outside of cultivated fields. Theor. Appl. Genet. 102: 841–846 [CrossRef] [Google Scholar]
  • Price J, Hobson R, Neale M, Bruce D (1996) Seed losses in commercial harvesting of oilseed rape. J. agric. Engng. Res. 65: 183–191 [CrossRef] [Google Scholar]
  • Rajani S, Sundaresan V (2001) The Arabidopsis myc/bHLH gene Alcatraz enables cell separation in fruit dehiscence. Curr. Biol. 11: 1914–1922 [CrossRef] [PubMed] [Google Scholar]
  • Ramsay G, Thompson C, Neilson S, Mackay G (1999) Honeybees as vectors of GM oilseed rape pollen. In Lutman P, ed, Gene Flow and Agriculture: Relevance for Transgenic Crops, British Crop Protection Council, pp 209–214 [Google Scholar]
  • Ramsay G, Thompson C, Squire G (2003) Quantifying landscape-scale gene flow in oilseed rape. DEFRA Project RG0216 [Google Scholar]
  • Raybould A, Gray A (1993) Genetically modified crops and hybridisation with wild relatives: a UK perspective. J. Appl. Ecol. 30: 199–219 [CrossRef] [Google Scholar]
  • Rieger M, Preston C, Powles S (1999) Risks of gene flow from transgenic herbicide-resistant canola (Brassica napus) to weedy relatives in southern Australian cropping systems. Aust. J. Agric. Res. 50: 115–128 [CrossRef] [Google Scholar]
  • Rieger M, Potter T, Preston C, Powles S (2001) Hybridization between Brassica napus L. and Raphanus raphanistrum L. under agronomic field conditions. Theor. Appl. Genet. 103: 555–560 [CrossRef] [Google Scholar]
  • Rieger M, Lamond M, Preston C, Powles S, Roush R (2002) Pollen-mediated movement of herbicide resistance between commercial canola fields. Science 296: 86–88 [Google Scholar]
  • Roller A, Beismann H, Albrecht H (2003) The influence of soil cultivation on the seed bank of GM-herbicide tolerant and conventional oilseed rape. Asp. App. Biol. 69: 131–135 [Google Scholar]
  • Salisbury P (2002) Genetically modified canola in Australia: agronomic and environmental considerations. In Downey R, ed, Australian Oilseeds Federation [Google Scholar]
  • Scheffler J, Dale P (1994) Opportunities for gene transfer from transgenic oilseed rape (Brassica napus). Trans. Res. 3: 263–278 [CrossRef] [Google Scholar]
  • Scheffler J, Parkinson R, Dale P (1993) Frequency and distance of pollen dispersal from transgenic oilseed rape (Brassica napus). Trans. Res. 2: 356–364 [CrossRef] [Google Scholar]
  • Scheffler J, Parkinson R, Dale P (1995) Evaluating the effectiveness of isolation distance for field plots of oilseed rape (Brassica napus) using a herbicide resistance transgene as a selectable marker. Plant Breed. 114: 317–321 [CrossRef] [Google Scholar]
  • Schiemann J (2003) Co-existence of genetically modified crops with conventional and organic farming. Environ. Biosafety Res. 2: 213–217 [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Schlink S (1998) 10 years survival of rape seed (Brassica napus L.) in soil. Z. Pflanzenk. Pflanzen. XVI, 169–172 [Google Scholar]
  • Scott S, Wilkinson M (1998) Transgene risk is low. Nature 393: 320 [CrossRef] [Google Scholar]
  • Scott S, Wilkinson M (1999) Low probability of chloroplast movement from oilseed rape (Brassica napus) into wild Brassica rapa. Nature Biotechnol. 17: 390–392 [Google Scholar]
  • Senoir I, Dale P (2002) Herbicide-tolerant crops in agriculture: oilseed rape as a case study. Plant Breed. 121: 97–107 [CrossRef] [Google Scholar]
  • Senior I, Moyes C, Dale P (2002) Herbicide sensitivity of transgenic multiple herbicide-tolerant oilseed rape. Pest Manage. Sci. 58: 405–412 [CrossRef] [PubMed] [Google Scholar]
  • Shirtliffe S, Entz M (2004) Chaff collection reduces seed dispersal of wild oat by a combine harvester. Weed Sci. (in press) [Google Scholar]
  • Simard M, Légère A, Pageau D, Lajeunnesse J, Warwick S (2002) The frequency and persistence of canola (Brassica napus) volunteers in Québec cropping systems. Weed Technol. 16: 433–439 [CrossRef] [Google Scholar]
  • Simpson E, Sweet J (2001) Consequence analysis of the impact on agriculture and the environment of the release of herbicide tolerant oilseed rape. MAFF report RG0217 [Google Scholar]
  • Simpson E, Sweet J (2004) Out-crossing between field scale areas of genetically modified herbicide tolerant and other winter oilseed rape cultivars. Pl. Gen. Resources J. (in press) [Google Scholar]
  • Simpson E, Norris C, Law J, Thomas J, Sweet J (1999) Gene flow in genetically modified herbicide tolerant oilseed rape (Brassica napus) in the UK. In Lutman P, ed, Gene Flow and Agriculture: Relevance for Transgenic Crops, British Crop Protection Council, pp 75–81 [Google Scholar]
  • Snow A (2002) Transgenic crops – why gene flow matters? Nature Biotechnol. 20: 542 [Google Scholar]
  • Snow A, Palma P (1997) Commercialization of transgenic plants. BioScience 47: 86–96 [CrossRef] [Google Scholar]
  • Snow A, Andersen B, Jørgensen R (1999) Costs of transgenic herbicide resistance introgressed from Brassica napus into weedy B. rapa. Mol. Ecol. 8: 605–615 [Google Scholar]
  • Squire G, Crawford J, Ramsay G, Thompson C, Bown J (1999) Gene flow at landscape level. In Lutman P, ed, Gene Flow and Agriculture: Relevance for Transgenic Crops, British Crop Protection Council, pp 57–64 [Google Scholar]
  • Squire G, Begg G, Askew M (2003) The potential for oilseed rape feral (volunteer) weeds to cause impurities in later oilseed rape crops. DEFRA project RG0114 [Google Scholar]
  • Sweet J (2003) Pollen dispersal and cross-pollination. In Boelt B, ed, 1st European Conference on the Co-existence of Genetically Modified Crops with Conventional and Organic Crops, Research Centre Flakkebjerg, pp 21–32 [Google Scholar]
  • Sweet J, Shepperson R, Thomas J, Simpson E (1997) The impact of releases of genetically modified herbicide tolerant oilseed rape in the UK. Proc. Brighton Crop Protect. Conf. – Weeds, pp 1291–1302 [Google Scholar]
  • Thomas D, Breve M, Raymer P (1991) Influence of timing and method of harvest on rapeseed yield. J. Prod. Agric. 4: 266–272 [Google Scholar]
  • Thompson C, Squire G, Mackay G, Bradshaw J, Crawford J, Ramsay G (1999) Regional patterns of gene flow and its consequences for GM oilseed rape. In Lutman P, ed, Gene Flow and Agriculture: Relevance for Transgenic Crops, British Crop Protection Council, pp 95–100 [Google Scholar]
  • Tiedje J, Colwell R, Grossman Y, Hodson R, Lenski R, Mack R, Regal P (1989) The planned introduction of genetically modified organisms: ecological considerations and recommendations. Ecology 70: 298–315 [CrossRef] [Google Scholar]
  • Timmons A, O’Brien E, Charters Y, Dubbels S, Wilkinson M (1995) Assessing the risks of wind pollination from fields of genetically modified Brassica napus ssp. oleifera. Euphytica 85: 417–423 [Google Scholar]
  • Timmons A, Charters Y, Crawford J, Burn D, Scott S, Dubbels S, Wilson N, Robertson A, O’Brian E, Squire G, Wilkinson M (1996) Risks from transgenic crops. Nature 380: 487 [CrossRef] [PubMed] [Google Scholar]
  • van Tienderen P (2004) Hybridization in nature: lessons for the introgression of transgene into wild relatives. In: den Nijs H, Bartsch D, Sweet J, eds, Introgression from Genetically Modified Plants into Wild Relatives, CABI publishing, pp 7–25 [Google Scholar]
  • Walklate P, Hunt J, Higson H, Sweet J (2004) A model of pollen-mediated gene flow for oilseed rape. Proc. R. Soc. Lond. 271: 441–449 [CrossRef] [Google Scholar]
  • Warwick S, Beckie H, Small E (1999) Transgenic crops: new weed problems for Canada? Phytoprotection 80: 71–84 [Google Scholar]
  • Warwick S, Simard M-J, Légère A, Beckie H, Braun L, Zhu B, Mason P, Séguin-Swartz G, Stewart N (2003) Hybridization between transgenic Brassica napus L. and its wild relatives: B. rapa L., Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.) O.E. Schulz. Theor. Appl. Genet. 107: 528–539 [CrossRef] [PubMed] [Google Scholar]
  • Warwick S, Beckie H, Simard M-J, Légère A, Nair H, Séguin-Swartz G (2004) Environmental and agronomic consequences of herbicide-resistant (HR) canola in Canada. In den Nijs H, Bartsch D, Sweet J, eds, Introgression from Genetically Modified Plants into Wild Relatives, CABI publishing, pp 323–337 [Google Scholar]
  • Wilkinson M, Charters Y, Timmons A, Dubbels S, Robertson A, Wilson N, Scott S, O'Brian E, Lawson H (1995) Problems of risk assessment with genetically modified oilseed rape. Proc. Brighton Crop Protect. Conf. – Weeds, pp 1035–1044 [Google Scholar]
  • Wilkinson M, Davenport I, Charters Y, Jones A, Allainguillaume J, Butler H, Mason D, Raybould A (2000) A direct regional scale estimate of transgene movement from genetically modified oilseed rape to its wild progenitors. Mol. Ecol. 9: 983–991 [CrossRef] [PubMed] [Google Scholar]