Free Access
Issue
Environ. Biosafety Res.
Volume 3, Number 2, April-June 2004
Page(s) 83 - 90
DOI https://doi.org/10.1051/ebr:2004008
Published online 15 September 2004
  • Amin-Hanjani S, Meikle A, Glover LA, Prosser JI, Killham K (1993) Plasmid and chromosomally encoded luminescence marker systems for detection of Pseudomonas fluorescens in soil. Mol. Ecol. 2: 47–54 [CrossRef] [Google Scholar]
  • Bloemberg GV, O’Toole GA, Lugtenberg BJJ, Kolter R (1997) Green fluorescent protein as a marker for Pseudomonas spp. Appl. Environ. Microbiol. 63: 4543–4551 [PubMed] [Google Scholar]
  • Bokman SH, Ward WW (1981) Renaturation of Aequorea green-fluorescent protein. Biochem. Biophys. Res. Commun. 101: 1372–1380 [Google Scholar]
  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263: 802–805 [CrossRef] [PubMed] [Google Scholar]
  • Cho J, Kim S (1999) Green fluorescent protein-based direct viable count to verify a viable but non-culturable state of Salmonella typhi in environmental samples. J. Microbiol. Methods 36: 227–235 [CrossRef] [PubMed] [Google Scholar]
  • de Weger LA, Dunbar P, Mahafee WF, Lugtenberg BJJ, Sayler GS (1991) Use of bioluminescence markers to detect Pseudomonas spp. in the rhizosphere. Appl. Environ. Microbiol. 57: 3641–3644 [PubMed] [Google Scholar]
  • Duncan S, Glover LA, Killham K, Prosser JL (1994) Luminescence-based detection of activity of starved and viable but nonculturable bacteria. Appl. Environ. Microbiol. 60: 1308–1316 [PubMed] [Google Scholar]
  • Grant FA, Prosser JI, Glover LA, Killham K (1992) Luminescence-based detection of Erwinia carotovora in the soil. Soil Biol. Biochem. 24: 961–967 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Jansson J (1998) Marker genes as tags for monitoring microorganisms in nature. An opinion. European Commission Biotechnology Programme, DGXII, Centraltryckeriet AB, Borås, Sweden [Google Scholar]
  • Jansson J (1999) Monitoring methods for specific microorganisms and microbial communities in nature. An opinion. European Commission Biotechnology Programme, DGXII, Centraltryckeriet AB, Borås, Sweden [Google Scholar]
  • Kogure K, Simidu U, Taga N (1979) A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 25: 415–420 [CrossRef] [PubMed] [Google Scholar]
  • Leff LG, Leff AA (1996) Use of green fluorescent protein to monitor survival of genetically engineered bacteria in aquatic environments. Appl. Environ. Microbiol. 62: 3486–3488 [PubMed] [Google Scholar]
  • Lleò MM, Pierobon S, Tafi MC, Signoreto C, Canepari P (2000) mRNA detection by reverse transcription-PCR for monitoring viability over time in an Enterococcus faecalis viable but nonculturable population maintained in a laboratory microcosm. Appl. Environ. Microbiol. 66: 4564–4567 [CrossRef] [PubMed] [Google Scholar]
  • Lilley AK, Bailey MJ (1997) The acquisition of indigenous plasmids by a genetically marked pseudomonad population colonizing the sugar beet phytosphere is related to local environment conditions. Appl. Environ. Microbiol. 63: 1577–1583 [PubMed] [Google Scholar]
  • Lindemann J, Suslow TV (1987) Competition between ice-nucleation active wild-type and ice nucleation-deficient deletion mutant strains of Pseudomonas syringae and P. fluorescens biovar I and biological control of frost injury on strawberry blossoms. Phytopathology 77: 882–886 [Google Scholar]
  • Lowder M, Oliver JD (2001) The use of modified GFP as a reporter for metabolic activity in Pseudomonas putida. Microb. Ecol. 41: 310–313 [PubMed] [Google Scholar]
  • Lowder M, Maraha N, Unge A, Jansson JK, Swiggett J, Oliver JD (2000) Effect of starvation and the-viable-but nonculturable state on green fluorescent protein (GFP) fluorescence in GFP-tagged Pseudomonas fluorescens A506. Appl. Environ. Microbiol. 66: 3160–3165 [CrossRef] [PubMed] [Google Scholar]
  • Meikle A, Killham K, Prosser JI, Glover LA (1992) Luminometric measurement of population activity of genetically modified Pseudomonas fluorescens in the soil. FEMS Microbiol. Lett. 78: 217–220 [CrossRef] [PubMed] [Google Scholar]
  • Normander B, Christensen BB, Molin S, Kroer N (1998) Effect of bacterial distribution and activity on conjugal gene transfer on the phylloplane of the bush bean (Phaseolus vulgaris). Appl. Environ. Microbiol. 64: 1902–1909 [PubMed] [Google Scholar]
  • Normander B, Hendriksen NB, Nybroe O (1999) Green fluorescent protein-marked Pseudomonas fluorescens: localization, viability and activity in the natural barley rhizosphere. Appl. Environ. Microbiol. 65: 4646–4651 [PubMed] [Google Scholar]
  • Oliver JD (1993) Formation of viable but nonculturable cells. In Kjelleberg S, ed, Starvation in bacteria, Plenum Press, New York, pp 239–272 [Google Scholar]
  • Oliver JD (2000a) Problems in detecting dormant (VBNC) cells, and the role of DNA elements in this response. In Jansson JK, van Elsas JD, Bailey M, eds, Tracking Genetically Engineered Microorganisms, Landes Bioscience, Georgetown, TX, pp 1–15 [Google Scholar]
  • Oliver JD (2000b) Public health significance of viable but nonculturable bacteria. In Colwell RR, Grimes DJ, eds, Non-Culturable Microorganisms in the Environment, Amer. Soc. Microbiol. Press, Washington, DC, pp 277–300 [Google Scholar]
  • Oliver JD, McDougald D, Barrett T, Glover LA, Prosser JI (1995) Effect of temperature and plasmid carriage on nonculturability in organisms targeted for release. FEMS Microbiol. Ecol. 17: 229–238 [CrossRef] [Google Scholar]
  • Ramos JL, Duque E, Ramos-Gonzalez M (1991) Survival in soils of an herbicide-resistant Pseudomonas putida strain bearing a recombinant TOL plasmid. Appl. Environ. Microbiol. 57: 260–266 [PubMed] [Google Scholar]
  • Saux MF-L, Hervio-Heath D, Loaec S, Colwell RR, Pommepuy M (2002) Detection of cytotoxin-hemolysin mRNA in nonculturable populations of environmental and clinical Vibrio vulnificus strains in artificial seawater. Appl. Environ. Microbiol. 68: 5641–5646 [CrossRef] [PubMed] [Google Scholar]
  • Unge A, Tombolini R, Möller, Jansson JK (1997) Optimization of GFP as a marker for detection of bacteria in environmental samples. In Hastings JW, Kricka LJ, Stanley PE, eds, Bioluminescence and chemiluminescence: molecular reporting with photons, John Wiley & Sons, Sussex, UK, pp 391–394 [Google Scholar]
  • Unge A, Tombolini R, Mølbak L, Jansson JK (1999) Simultaneous monitoring of cell number and metabolic activity of specific bacterial populations with a dual gfp-luxAB system. Appl. Environ. Microbiol. 65: 813–821 [PubMed] [Google Scholar]
  • Yaron S, Matthews K (2002) A reverse transcriptase-polymerase chain reaction assay for detection of viable Escherichia coli O157:H7: investigation of specific target genes. J. Appl. Microbiol. 92: 633–640 [Google Scholar]