Free Access
Issue
Environ. Biosafety Res.
Volume 7, Number 4, October-December 2008
Page(s) 227 - 239
DOI https://doi.org/10.1051/ebr:2008019
Published online 29 October 2008
  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 24: 3389–3402
  • Arlorio M, Ludwig A, Boller T, Bonfante P (1992) Inhibition of fungal growth by plant chitinases and Formula -1,3-glucanases. Protoplasma 171: 34–43 [CrossRef]
  • Asao H, Nishizawa Y, Arai S, Sato T, Hirai M, Yoshida K, Shinmyo A, Hibi T (1997) Enhanced resistance against a fungal pathogen Sphaerotheca humuli in transgenic strawberry expressing a rice chitinase gene. Plant Biotechnol. 14: 145–149
  • Baker ME (1998) Evolution of mammalian 11 beta- and 17 beta-hydroxysteroid dehydrogenases-type 2 and retinol dehydrogenases from ancestors in Caenorhabditis elegans and evidence for horizontal transfer of a eukaryote dehydrogenase to E. coli. J. Ster. Biochem. Mol. Biol. 66: 355–363 [CrossRef]
  • Bartnicki-Garcia S (1968) Cell wall chemistry, morphogenesis, and taxonomy of fungi. Ann. Rev. Microbiol. 22: 87–108
  • Bertolla F, Simonet P (1999) Horizontal gene transfers in the environment, natural transformation as a putative process for gene transfers between transgenic plants and micro-organisms. Res. Microbiol. 150: 375–384
  • Beintema J (1994) Structural features of plant chitinases and chitin-binding proteins. FEBS Letters 350: 159–163 [CrossRef] [PubMed]
  • Bolar JP, Norelli JL, Wong K-W, Hayes CK, Harman GE, Aldwinckle HS (2000) Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and reduces vigor. Phytopathology 90: 72–77 [CrossRef] [PubMed]
  • Bolar J, Norelli J, Harman G, Brown S, Aldwinckle H (2001) Synergistic activity of endochitinase and exochitinase from Trichoderma atroviride (T. harzianum) against the pathogenic fungus (Venturia inaequalis) in transgenic apple plants. Transgenic Res. 10: 533–543
  • Boller T (1987) Hydrolytic enzymes in plant disease resistance. In Kosuge T, Nester EW, eds, Plant-Microbe Interactions, Macmillan, New York, Vol. 2, pp 385–413
  • Brinkman FSL, MacFarlane ELA, Warrener P, Hancoc R (2001) Evolutionary relationships among virulence-associated histidine kinases. Infect. Immun. 69: 5207–5211 [CrossRef] [PubMed]
  • Brinkman FSL, Blanchard JL, Cherkasov A, Av-Gay Y, Brunham RC, Fernandez RC, Finlay B, Otto SP, Ouellette BFF, Keeling PJ, Rose AM, Hancock REW, Jones SJM (2002) Evidence that plant-like genes in Chlamydia species reflect an ancestral relationship between Chlamydiaceae, cyanobacteria, and the choloroplast. Genome Res. 12: 11159–1167
  • Broglie K, Chet I, Holliday M, Cressman R, Biddle P, Knowlton S, Mauvais CJ, Broglie R (1991) Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254: 1194–1197 [CrossRef] [PubMed]
  • Buades C, Moya A (1996) Phylogenetic analysis of the isopenicillin-N-synthetase horizontal gene transfer. J. Mol. Evol. 42: 537–542 [CrossRef] [PubMed]
  • Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K (1993) Plant chitinases. Plant J. 3: 31–40
  • Conner AJ, Glare TR, Nap J-P (2003) The release of genetically modified crops into the environment. Part II. Overview of ecological risk assessment. Plant J. 33: 19–46
  • Cottrell MT, Wood DN, Yu L, Kirchman DL (2000) Selected chitinase genes in cultured and uncultured marine bacteria in the Formula - and Formula - subclasses of the Proteobacteria. Appl. Environ. Microbiol. 66: 1195–1201 [CrossRef] [PubMed]
  • Dale PJ, Clarke B, Fontes EMG (2002) Potential for the environmental impact of transgenic crops. Nature Biotechnol. 20: 567–574
  • Datta K, Koukolíková-Nicola Z, Baisakh N, Oliva N, Datta SK (2000) Agrobacterium-mediated engineering for sheath blight resistance of indica rice cultivars from different ecosystems. Theor. Appl. Genet. 100: 832–839 [CrossRef]
  • Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3: 853–859 [CrossRef] [PubMed]
  • Davis JM, Clarke HR, Bradshaw HD Jr, Gordon MP (1991) Populus chitinase genes, structure, organization, and similarity of translated sequences to herbaceous plant chitinases. Plant Mol. Biol. 17: 631–639
  • De Vries J, Meier P, Wackernagel W (2001) The natural transformation of the soil bacteria Pseudomonas stutzeri and Acinetobacter sp. by transgenic plant DNA strictly depends on homologous sequences in the recipient cells. FEMS Microbiology Letters 195: 211–215 [PubMed]
  • Emani C, Garcia JM, Lopata-Finch E, Pozo MJ, Uribe P, Kim D-J, Sunikumar G, Cook DR, Kenerley CM, Rathore KS (2003) Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from Trichoderma virens. Plant Biotech. J. 1: 321–336
  • Furner IJ, Huffman GA, Amasino RM, Garfinkel DJ, Gordon MP, Nester EW (1986) An Agrobacterium transformation in the evolution of the genus Nicotiana. Nature 319: 422–427 [CrossRef]
  • Gamieldien J, Ptitsyn A, Hide W (2002) Eukaryotic genes in Mycobacterium tuberculosis could have a role in pathogenesis and immunomodulation. Trends Genet. 18: 5–8
  • Garcia-Vallve S, Guzman E, Montero MA, Romeu A (2003) HGT-DB, a database of putative horizontally transferred genes in prokaryotic complete genomes. Nucleic Acids Res. 31: 187–189
  • Gay P (2001) The biosafety of antibiotic resistance markers in plant transformation and the dissemination of genes through horizontal gene flow. In Custers R, ed, Safety of genetically engineered crops, Zwijnaarde, Belgium, Flanders Interuniversity Institute for Biotechnology, pp 135–159
  • Gebhard F, Smalla K (1999) Monitoring field releases of genetically modified sugar beets for persistence of transgenic plant DNA and horizontal gene transfer. FEMS Microbiol. Ecol. 28: 261–272 [CrossRef]
  • Grison R, Grezes-Besset B, Schneider M, Lucante N, Olsen L, Leguay JJ, Toppan A (1996) Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene. Nature Biotechnol. 14: 643–646
  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95–98
  • Hamel F, Boivin R, Tremblay C, Bellemare G (1997) Structural and evolutionary relationships among chitinases of flowering plants. J. Mol. Evol. 44: 614–624 [CrossRef] [PubMed]
  • Hawtin RE, Zarkowska T, Arnold K, Thomas CJ, Gooday GW, King LA, Kuzio JA, Possee RD (1997) Liquefaction of Autographa californica nucleopolyhedrovirus-infected insects is dependent on the integrity of virus-encoded chitinase and cathepsin genes. Virology 238: 243–253
  • Hay I, Morency M-J, Séguin A (2002) Assessing the persistence of DNA in decomposing leaves of genetically modified poplar leaves. Can. J. For. Res. 32: 977–982 [CrossRef]
  • Heinemann JA, Traavik T (2004) Problems in monitoring horizontal gene transfer in field trials of transgenic plants. Nature Biotechnol. 22: 1105–1109
  • Heuer H, Smalla K (2007) Horizontal gene transfer between bacteria. Environ. Biosafety Res. 6: 3–13 [CrossRef] [EDP Sciences] [PubMed]
  • Hoffman T, Golz C, Schieder O (1994) Foreign DNA sequences are received by a wild-type strain of Aspergillus niger after co-culture with transgenic higher plants. Curr. Genet. 27: 70–76 [CrossRef] [PubMed]
  • Holmgren A, Bränden C (1989) Crystal structure of chaperone protein PapD reveals an immunoglobulin fold. Nature 342: 248–251 [CrossRef] [PubMed]
  • Hon WC, Griffith M, Mlynarz A, Kwok YC, Yang DSC (1995) Antifreeze proteins in winter rye are similar to pathogenesis-related proteins. Plant Physiol. 109: 879–889 [CrossRef] [PubMed]
  • Intrieri M, Buiatti M (2001) The horizontal transfer of Agrobacterium rhizogenes genes and the evolution of the genus Nicotiana. Mol. Phylogenet. Evol. 20: 100–110 [CrossRef] [PubMed]
  • Katz LA (1996) Transkingdom transfer of the phosphoglucose isomerase gene. J. Mol. Evol. 43: 453–459 [CrossRef] [PubMed]
  • Ke D, Boissinot M, Huletsky A, Picard FJ, Frenette J, Ouellette M, Roy PH, Bergeron MG (2000) Evidence for horizontal gene transfer in evolution of elongation factor Tu in enterococci. J. Bacteriol. 182: 6913–6920 [CrossRef] [PubMed]
  • Klotz MG, Klassen GR, Loewen PC (1997) Phylogenetic relationships among prokaryotic and eukaryotic catalases. Mol. Biol. Evol. 14: 951–958 [PubMed]
  • Kong H, Shimosaka M, Ando Y, Nishiyama K, Fujii T, Miyashita K (2001) Species-specific distribution of a modular family 19 chitinase gene in Burkholderia gladioli. FEMS Microbiol. Ecol. 37: 135–141 [CrossRef]
  • Koonin EV, Makarova KS, Aravind L (2001) Horizontal gene transfer in prokaryotes, quantification and classification. Ann. Rev. Microbiol. 55: 709–742
  • Koski LB, Morton RA, Golding GB (2000) Codon bias and base composition are poor indicators of horizontally transferred genes. Mol. Biol. Evol. 18: 404–412
  • Lilley AK, Fry JC, Day MJ, Bailey MJ (1994) In situ transfer of an exogenously isolated plasmid between Pseudomonas spp. in sugar beet rhizosphere. Microbiology 140: 27–33 [CrossRef]
  • Lorito M, Woo SL, Fernandez IG, Colucci G, Harman GE, Pintor-Toro JA, Filippone E, Muccifora S, Lowrence CB, Zoina A, Tuzun S, Scala F (1998) Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Proc. Natl. Acad. Sci. USA 95: 7860–7865 [CrossRef]
  • Mauch F, Mauch-Mani B, Boller T (1988) Antifungal hydrolases in pea tissue. II. Inhibition of fungal growth by combinations of chitinase and Formula -1,3-glucanase. Plant Physiol. 88: 936–942
  • Melchers LS, Apotheker-de Groot M, van der Knaap JA, Ponstein AS, Sela-Buurlage MB, Bol JF, Cornelissen BJ, van den Elzen PJM, Linthorst HJM (1994) A new class of tobacco chitinases homologous to bacterial exo-chitinases displays antifungal activity. Plant J. 5: 469–480
  • Monier JM, Bernillon D, Kay E, Faugier A, Rybalka O, Dessaux Y, Simonet P, Vogel TM (2007) Detection of potential transgenic plant DNA recipients among bacteria. Environ. Biosafety Res. 6: 71–83 [CrossRef] [EDP Sciences] [PubMed]
  • Nielsen KM, Townsend JP (2004) Monitoring and modeling horizontal gene transfer. Nature Biotechnol. 22: 1110–1114
  • Nielsen KM, Gebhard F, Smalla K, Bones AM, van Elsas JD (1997) Evaluation of possible horizontal gene transfer from transgenic plants to the soil bacterium Acinetobacter calcoaceticus BD413. Theor. Appl. Genet. 95: 815–821 [CrossRef]
  • Nielsen KM, Bones AM, Smalla K, van Elsas JD (1998) Horizontal gene transfer from transgenic plants to terrestrial bacteria – rare event. FEMS Microbiol. Res. 22: 79–103
  • Nielsen KM, van Elsas JD, Smalla K (2000) Transformation of Acinetobacter sp. Strain BD413 (pFGnptII) with transgenic plant DNA in soil microcosms and effects of kanamycin on selection of transformants. Appl. Environ. Microbiol. 66: 1237–1242 [CrossRef] [PubMed]
  • Nielsen KM, Johnsen PJ, Bensasson D, Daffonchio D (2007) Release and persistence of extracellular DNA in the environment. Environ. Biosafety Res. 6: 37–53 [CrossRef] [EDP Sciences] [PubMed]
  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405: 299–304 [CrossRef] [PubMed]
  • Ohno T, Armand S, Hata T, Nikaidou N, Henrissat B, Mitsutomi M, Watanabe T (1996) A modular family 19 chitinase found in the prokaryotic organism Streptomyces griseus HUT 6037. J. Bacteriol. 17: 5065–5070
  • Pappinen A, Degefu Y, Syrjälä L, Keinonen K, von Weissenberg K (2002) Transgenic silver birch (Betula pendula) expressing a sugar beet chitinase 4 gene shows enhanced resistance to Pyrenopeziza betulicola. Plant Cell Rep. 20: 1046–1051
  • Pasonen H-L, Seppänen S-K, Degefu Y, Rytkönen A, von Weissenberg K, Pappinen A (2004) Field performance of chitinase transgenic silver birches (Betula pendula): resistance to fungal diseases. Theor. Appl. Genet. 109: 562–570 [PubMed]
  • Pontiroli A, Simonet P, Frostegard A, Vogel TM, Monier J-M (2007) Fate of transgenic plant DNA in the environment. Environ. Biosafety Res. 6: 15–35
  • Robinson SP, Jacobs AK, Dry IB (1997) A class IV chitinase is highly expressed in grape berries during ripening. Plant Physiol. 114: 771–778 [CrossRef] [PubMed]
  • Royo J, Gimez E, Hueros G (2000) CMP-KDO synthetase, a plant gene borrowed from gram negative eubacteria. Trends Genet. 16: 432–433
  • Schlumbaum A, Mauch F, Vögeli U, Boller T (1986) Plant chitinases are potent inhibitors of fungal growth. Nature 324: 365–367 [CrossRef]
  • Snowden K, Logan K, Didier ES (1999) Encephalitozoon cuniculi strain III is a cause of encephalitozoonosis in both humans and dogs. J. Infect Dis. 180: 2086–2088
  • Sowka S, Hsieh LS, Krebitz M, Akasawa A, Martin BM, Starrett D, Peterbauer CK, Scheiner O, Breiteneder H (1998) Identification and cloning of Prs a 1, a 32-kDa endochitinase and major allergen of avocado, and its expression in the yeast Pichia pastoris. J. Biol. Chem. 273: 28091–28097
  • Sun L, Adams B, Gurnon JR, Ye Y, Van Etten J (1999) Characterization of two chitinase genes and one chitisanase gene encoded by Chlorella virus PBCV-1. Virology 263: 376–387 [CrossRef] [PubMed]
  • Swofford DL (2000) PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts
  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W, improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap-penalties and weigh matrix choise. Nucleic Acids Res. 22: 4673–4680
  • Troxler J, Azelvandre P, Zala M, Defago G, Haas D (1997) Conjugative transfer of chromosomal genes between fluorescent pseudomonas in the rhizosphere of wheat. Appl. Environ. Microbiol. 63: 213–219
  • van Elsas JD, Nikkel M, van Overbeek LS (1989) Detection of plasmid RP4 transfer in soil and rhizosphere, and the occurrence of homology to RP4 in soil bacteria. Curr. Microbiol. 19: 375–381 [CrossRef]
  • van Elsas JD, Turner S, Bailey MJ (2003) Horizontal gene transfer in the phytosphere. New Phytol. 157: 525–537
  • van Frankenhuyzen K, Beardmore T (2004) Current status and environmental impact of transgenic forest trees. Can. J. For. Res. 34: 1163–1180
  • Vellice GR, Diaz Ricci JC, Hernández L, Castagnaro AP (2006) Enhanced resistance to Botrytis cinerea mediated by the transgenic expression of the chitinase gene ch5B in strawberry. Transgenic Res. 15: 57–68
  • Vierheilig H, Alt-Hug M, Wiemken A, Boller T (2001) Hyphal in vitro growth of the arbuscular mycorrhizal fungus Glomus mossae is affected by chitinase but not by Formula -1,3-glucanase. Mycorrhiza 11: 279–282 [CrossRef] [PubMed]
  • Watanabe T, Kanai R, Kawase T, Tanabe T, Mitsutomi M, Sakuda S, Miyashita K (1999) Family 19 chitinases of Streptomyces species, characterization and distribution. Microbiology 145: 3353–3363 [PubMed]
  • Wiener P, Egan S, Huddleston A, Wellington E (1998) Evidence for transfer of antibiotic-resistance genes in soil populations of Streptomycetes. Mol. Ecol. 7: 1205–1216
  • Wolfenbarger LL, Pfifer PR (2000) The ecological risks and benefits of genetically engineered plants. Science 290: 2088–2093 [CrossRef] [PubMed]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.